Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387368532> ?p ?o ?g. }
- W4387368532 endingPage "100129" @default.
- W4387368532 startingPage "100129" @default.
- W4387368532 abstract "Efficient airport airside ground movement (AAGM) is key to successful operations of urban air mobility. Recent studies have introduced the use of multi-objective multigraphs (MOMGs) as the conceptual prototype to formulate AAGM. Swift calculation of the shortest path costs is crucial for the algorithmic heuristic search on MOMGs, however, previous work chiefly focused on single-objective simple graphs (SOSGs), treated cost enquires as search problems, and failed to keep a low level of computational time and storage complexity. This paper concentrates on the conceptual prototype MOMG, and investigates its node feature extraction, which lays the foundation for efficient prediction of shortest path costs. Two extraction methods are implemented and compared: a statistics-based method that summarises 22 node physical patterns from graph theory principles, and a learning-based method that employs node embedding technique to encode graph structures into a discriminative vector space. The former method can effectively evaluate the node physical patterns and reveals their individual importance for distance prediction, while the latter provides novel practices on processing multigraphs for node embedding algorithms that can merely handle SOSGs. Three regression models are applied to predict the shortest path costs to demonstrate the performance of each. Our experiments on randomly generated benchmark MOMGs show that (i) the statistics-based method underperforms on characterising small distance values due to severe overestimation, (ii) a subset of essential physical patterns can achieve comparable or slightly better prediction accuracy than that based on a complete set of patterns, and (iii) the learning-based method consistently outperforms the statistics-based method, while maintaining a competitive level of computational complexity." @default.
- W4387368532 created "2023-10-06" @default.
- W4387368532 creator A5019910716 @default.
- W4387368532 creator A5041983865 @default.
- W4387368532 creator A5069910979 @default.
- W4387368532 creator A5078769590 @default.
- W4387368532 date "2023-10-01" @default.
- W4387368532 modified "2023-10-16" @default.
- W4387368532 title "Extracting Multi-objective Multigraph Features for the Shortest Path Cost Prediction: Statistics-based or Learning-based?" @default.
- W4387368532 cites W1098724946 @default.
- W4387368532 cites W1969483458 @default.
- W4387368532 cites W1970166004 @default.
- W4387368532 cites W1970871468 @default.
- W4387368532 cites W1986310535 @default.
- W4387368532 cites W2002779084 @default.
- W4387368532 cites W2004010576 @default.
- W4387368532 cites W2007572995 @default.
- W4387368532 cites W2010043809 @default.
- W4387368532 cites W2017694061 @default.
- W4387368532 cites W2028225313 @default.
- W4387368532 cites W2041757699 @default.
- W4387368532 cites W2044124294 @default.
- W4387368532 cites W2045446569 @default.
- W4387368532 cites W2056944867 @default.
- W4387368532 cites W2062215476 @default.
- W4387368532 cites W2070493638 @default.
- W4387368532 cites W2085041447 @default.
- W4387368532 cites W2087194317 @default.
- W4387368532 cites W2090891622 @default.
- W4387368532 cites W2102636708 @default.
- W4387368532 cites W2112090702 @default.
- W4387368532 cites W2127151074 @default.
- W4387368532 cites W2134784378 @default.
- W4387368532 cites W2143893259 @default.
- W4387368532 cites W2145541974 @default.
- W4387368532 cites W2149055390 @default.
- W4387368532 cites W2152056108 @default.
- W4387368532 cites W2154897810 @default.
- W4387368532 cites W2161455936 @default.
- W4387368532 cites W2169528473 @default.
- W4387368532 cites W2427371368 @default.
- W4387368532 cites W2612872092 @default.
- W4387368532 cites W2962756421 @default.
- W4387368532 cites W2966694634 @default.
- W4387368532 cites W3048638663 @default.
- W4387368532 cites W3103452448 @default.
- W4387368532 cites W3105981889 @default.
- W4387368532 cites W3152893301 @default.
- W4387368532 cites W4313059051 @default.
- W4387368532 cites W4318002264 @default.
- W4387368532 doi "https://doi.org/10.1016/j.geits.2023.100129" @default.
- W4387368532 hasPublicationYear "2023" @default.
- W4387368532 type Work @default.
- W4387368532 citedByCount "0" @default.
- W4387368532 crossrefType "journal-article" @default.
- W4387368532 hasAuthorship W4387368532A5019910716 @default.
- W4387368532 hasAuthorship W4387368532A5041983865 @default.
- W4387368532 hasAuthorship W4387368532A5069910979 @default.
- W4387368532 hasAuthorship W4387368532A5078769590 @default.
- W4387368532 hasBestOaLocation W43873685321 @default.
- W4387368532 hasConcept C119857082 @default.
- W4387368532 hasConcept C124101348 @default.
- W4387368532 hasConcept C127413603 @default.
- W4387368532 hasConcept C132525143 @default.
- W4387368532 hasConcept C13280743 @default.
- W4387368532 hasConcept C154945302 @default.
- W4387368532 hasConcept C185798385 @default.
- W4387368532 hasConcept C205649164 @default.
- W4387368532 hasConcept C22590252 @default.
- W4387368532 hasConcept C41008148 @default.
- W4387368532 hasConcept C41608201 @default.
- W4387368532 hasConcept C62611344 @default.
- W4387368532 hasConcept C66938386 @default.
- W4387368532 hasConcept C80444323 @default.
- W4387368532 hasConceptScore W4387368532C119857082 @default.
- W4387368532 hasConceptScore W4387368532C124101348 @default.
- W4387368532 hasConceptScore W4387368532C127413603 @default.
- W4387368532 hasConceptScore W4387368532C132525143 @default.
- W4387368532 hasConceptScore W4387368532C13280743 @default.
- W4387368532 hasConceptScore W4387368532C154945302 @default.
- W4387368532 hasConceptScore W4387368532C185798385 @default.
- W4387368532 hasConceptScore W4387368532C205649164 @default.
- W4387368532 hasConceptScore W4387368532C22590252 @default.
- W4387368532 hasConceptScore W4387368532C41008148 @default.
- W4387368532 hasConceptScore W4387368532C41608201 @default.
- W4387368532 hasConceptScore W4387368532C62611344 @default.
- W4387368532 hasConceptScore W4387368532C66938386 @default.
- W4387368532 hasConceptScore W4387368532C80444323 @default.
- W4387368532 hasLocation W43873685321 @default.
- W4387368532 hasOpenAccess W4387368532 @default.
- W4387368532 hasPrimaryLocation W43873685321 @default.
- W4387368532 hasRelatedWork W2028665553 @default.
- W4387368532 hasRelatedWork W2086519370 @default.
- W4387368532 hasRelatedWork W2087343574 @default.
- W4387368532 hasRelatedWork W2105860728 @default.
- W4387368532 hasRelatedWork W2130974462 @default.
- W4387368532 hasRelatedWork W2367780884 @default.
- W4387368532 hasRelatedWork W2378211422 @default.