Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387369521> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4387369521 endingPage "3218" @default.
- W4387369521 startingPage "3199" @default.
- W4387369521 abstract "Abstract. Assessing or forecasting seismic damage to buildings is an essential issue for earthquake disaster management. In this study, we explore the efficacy of several machine learning models for damage characterization, trained and tested on the database of damage observed after Italian earthquakes (the Database of Observed Damage – DaDO). Six models were considered: regression- and classification-based machine learning models, each using random forest, gradient boosting, and extreme gradient boosting. The structural features considered were divided into two groups: all structural features provided by DaDO or only those considered to be the most reliable and easiest to collect (age, number of storeys, floor area, building height). Macroseismic intensity was also included as an input feature. The seismic damage per building was determined according to the EMS-98 scale observed after seven significant earthquakes occurring in several Italian regions. The results showed that extreme gradient boosting classification is statistically the most efficient method, particularly when considering the basic structural features and grouping the damage according to the traffic-light-based system used; for example, during the post-disaster period (green, yellow, and red), 68 % of buildings were correctly classified. The results obtained by the machine-learning-based heuristic model for damage assessment are of the same order of accuracy (error values were less than 17 %) as those obtained by the traditional RISK-UE method. Finally, the machine learning analysis found that the importance of structural features with respect to damage was conditioned by the level of damage considered." @default.
- W4387369521 created "2023-10-06" @default.
- W4387369521 creator A5015174385 @default.
- W4387369521 creator A5042369894 @default.
- W4387369521 creator A5048308221 @default.
- W4387369521 creator A5053705097 @default.
- W4387369521 date "2023-10-05" @default.
- W4387369521 modified "2023-10-16" @default.
- W4387369521 title "Testing machine learning models for heuristic building damage assessment applied to the Italian Database of Observed Damage (DaDO)" @default.
- W4387369521 cites W1570188672 @default.
- W4387369521 cites W1678356000 @default.
- W4387369521 cites W1941659294 @default.
- W4387369521 cites W1969311277 @default.
- W4387369521 cites W1986074276 @default.
- W4387369521 cites W2007271261 @default.
- W4387369521 cites W2009534748 @default.
- W4387369521 cites W2052225719 @default.
- W4387369521 cites W2113760062 @default.
- W4387369521 cites W2244501064 @default.
- W4387369521 cites W2565400851 @default.
- W4387369521 cites W2793734850 @default.
- W4387369521 cites W2807042118 @default.
- W4387369521 cites W2911964244 @default.
- W4387369521 cites W2974551902 @default.
- W4387369521 cites W2981915020 @default.
- W4387369521 cites W3000042898 @default.
- W4387369521 cites W3008799350 @default.
- W4387369521 cites W3010401005 @default.
- W4387369521 cites W3024912007 @default.
- W4387369521 cites W3033652307 @default.
- W4387369521 cites W3046705597 @default.
- W4387369521 cites W3088849575 @default.
- W4387369521 cites W3089246515 @default.
- W4387369521 cites W3089426784 @default.
- W4387369521 cites W3093739175 @default.
- W4387369521 cites W3102476541 @default.
- W4387369521 cites W3111526209 @default.
- W4387369521 cites W3134889465 @default.
- W4387369521 cites W3167160630 @default.
- W4387369521 cites W3196242262 @default.
- W4387369521 cites W3198714982 @default.
- W4387369521 cites W342265982 @default.
- W4387369521 cites W4212902152 @default.
- W4387369521 cites W4220765474 @default.
- W4387369521 cites W4286494054 @default.
- W4387369521 cites W5812693 @default.
- W4387369521 doi "https://doi.org/10.5194/nhess-23-3199-2023" @default.
- W4387369521 hasPublicationYear "2023" @default.
- W4387369521 type Work @default.
- W4387369521 citedByCount "0" @default.
- W4387369521 crossrefType "journal-article" @default.
- W4387369521 hasAuthorship W4387369521A5015174385 @default.
- W4387369521 hasAuthorship W4387369521A5042369894 @default.
- W4387369521 hasAuthorship W4387369521A5048308221 @default.
- W4387369521 hasAuthorship W4387369521A5053705097 @default.
- W4387369521 hasBestOaLocation W43873695211 @default.
- W4387369521 hasConcept C119857082 @default.
- W4387369521 hasConcept C154945302 @default.
- W4387369521 hasConcept C169258074 @default.
- W4387369521 hasConcept C173801870 @default.
- W4387369521 hasConcept C41008148 @default.
- W4387369521 hasConcept C46686674 @default.
- W4387369521 hasConcept C70153297 @default.
- W4387369521 hasConcept C77088390 @default.
- W4387369521 hasConceptScore W4387369521C119857082 @default.
- W4387369521 hasConceptScore W4387369521C154945302 @default.
- W4387369521 hasConceptScore W4387369521C169258074 @default.
- W4387369521 hasConceptScore W4387369521C173801870 @default.
- W4387369521 hasConceptScore W4387369521C41008148 @default.
- W4387369521 hasConceptScore W4387369521C46686674 @default.
- W4387369521 hasConceptScore W4387369521C70153297 @default.
- W4387369521 hasConceptScore W4387369521C77088390 @default.
- W4387369521 hasFunder F4320320883 @default.
- W4387369521 hasFunder F4320321048 @default.
- W4387369521 hasFunder F4320338337 @default.
- W4387369521 hasIssue "10" @default.
- W4387369521 hasLocation W43873695211 @default.
- W4387369521 hasOpenAccess W4387369521 @default.
- W4387369521 hasPrimaryLocation W43873695211 @default.
- W4387369521 hasRelatedWork W2073883415 @default.
- W4387369521 hasRelatedWork W2766514146 @default.
- W4387369521 hasRelatedWork W2885516856 @default.
- W4387369521 hasRelatedWork W2885778889 @default.
- W4387369521 hasRelatedWork W2967733078 @default.
- W4387369521 hasRelatedWork W3137904399 @default.
- W4387369521 hasRelatedWork W4289703016 @default.
- W4387369521 hasRelatedWork W4310224730 @default.
- W4387369521 hasRelatedWork W4310492845 @default.
- W4387369521 hasRelatedWork W4386690025 @default.
- W4387369521 hasVolume "23" @default.
- W4387369521 isParatext "false" @default.
- W4387369521 isRetracted "false" @default.
- W4387369521 workType "article" @default.