Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387372192> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4387372192 abstract "Abstract Magnetic resonance (MR) imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body. The segmentation of MR images plays a crucial role in medical image analysis, as it enables accurate diagnosis, treatment planning, and monitoring of various diseases and conditions. Due to the lack of sufficient medical images, it is challenging to achieve an accurate segmentation, especially with the application of deep learning networks. The aim of this work is to study transfer learning from T1‐weighted (T1‐w) to T2‐weighted (T2‐w) MR sequences to enhance bone segmentation with minimal required computation resources. With the use of an excitation‐based convolutional neural networks, four transfer learning mechanisms are proposed: transfer learning without fine tuning, open fine tuning, conservative fine tuning, and hybrid transfer learning. Moreover, a multi‐parametric segmentation model is proposed using T2‐w MR as an intensity‐based augmentation technique. The novelty of this work emerges in the hybrid transfer learning approach that overcomes the overfitting issue and preserves the features of both modalities with minimal computation time and resources. The segmentation results are evaluated using 14 clinical 3D brain MR and CT images. The results reveal that hybrid transfer learning is superior for bone segmentation in terms of performance and computation time with DSCs of 0.5393 ± 0.0007. Although T2‐w‐based augmentation has no significant impact on the performance of T1‐w MR segmentation, it helps in improving T2‐w MR segmentation and developing a multi‐sequences segmentation model." @default.
- W4387372192 created "2023-10-06" @default.
- W4387372192 creator A5007891293 @default.
- W4387372192 creator A5042805664 @default.
- W4387372192 creator A5068358159 @default.
- W4387372192 creator A5091511508 @default.
- W4387372192 date "2023-10-04" @default.
- W4387372192 modified "2023-10-16" @default.
- W4387372192 title "Transfer learning from T1‐weighted to T2‐weighted Magnetic resonance sequences for brain image segmentation" @default.
- W4387372192 cites W2610796455 @default.
- W4387372192 cites W2792193061 @default.
- W4387372192 cites W2901228371 @default.
- W4387372192 cites W2906302663 @default.
- W4387372192 cites W2945839551 @default.
- W4387372192 cites W2965138341 @default.
- W4387372192 cites W2971685841 @default.
- W4387372192 cites W3018852185 @default.
- W4387372192 cites W3033492597 @default.
- W4387372192 cites W3046235658 @default.
- W4387372192 cites W3089225552 @default.
- W4387372192 cites W3091484480 @default.
- W4387372192 cites W3091723340 @default.
- W4387372192 cites W3100715778 @default.
- W4387372192 cites W3104785286 @default.
- W4387372192 cites W3143564277 @default.
- W4387372192 cites W4220686927 @default.
- W4387372192 cites W4283020645 @default.
- W4387372192 cites W4283827181 @default.
- W4387372192 cites W4285404677 @default.
- W4387372192 doi "https://doi.org/10.1049/cit2.12270" @default.
- W4387372192 hasPublicationYear "2023" @default.
- W4387372192 type Work @default.
- W4387372192 citedByCount "0" @default.
- W4387372192 crossrefType "journal-article" @default.
- W4387372192 hasAuthorship W4387372192A5007891293 @default.
- W4387372192 hasAuthorship W4387372192A5042805664 @default.
- W4387372192 hasAuthorship W4387372192A5068358159 @default.
- W4387372192 hasAuthorship W4387372192A5091511508 @default.
- W4387372192 hasBestOaLocation W43873721921 @default.
- W4387372192 hasConcept C108583219 @default.
- W4387372192 hasConcept C124504099 @default.
- W4387372192 hasConcept C126838900 @default.
- W4387372192 hasConcept C143409427 @default.
- W4387372192 hasConcept C150899416 @default.
- W4387372192 hasConcept C153180895 @default.
- W4387372192 hasConcept C154945302 @default.
- W4387372192 hasConcept C31972630 @default.
- W4387372192 hasConcept C41008148 @default.
- W4387372192 hasConcept C65885262 @default.
- W4387372192 hasConcept C71924100 @default.
- W4387372192 hasConcept C81363708 @default.
- W4387372192 hasConcept C89600930 @default.
- W4387372192 hasConceptScore W4387372192C108583219 @default.
- W4387372192 hasConceptScore W4387372192C124504099 @default.
- W4387372192 hasConceptScore W4387372192C126838900 @default.
- W4387372192 hasConceptScore W4387372192C143409427 @default.
- W4387372192 hasConceptScore W4387372192C150899416 @default.
- W4387372192 hasConceptScore W4387372192C153180895 @default.
- W4387372192 hasConceptScore W4387372192C154945302 @default.
- W4387372192 hasConceptScore W4387372192C31972630 @default.
- W4387372192 hasConceptScore W4387372192C41008148 @default.
- W4387372192 hasConceptScore W4387372192C65885262 @default.
- W4387372192 hasConceptScore W4387372192C71924100 @default.
- W4387372192 hasConceptScore W4387372192C81363708 @default.
- W4387372192 hasConceptScore W4387372192C89600930 @default.
- W4387372192 hasFunder F4320320924 @default.
- W4387372192 hasLocation W43873721921 @default.
- W4387372192 hasOpenAccess W4387372192 @default.
- W4387372192 hasPrimaryLocation W43873721921 @default.
- W4387372192 hasRelatedWork W2951211570 @default.
- W4387372192 hasRelatedWork W3133861977 @default.
- W4387372192 hasRelatedWork W3167935049 @default.
- W4387372192 hasRelatedWork W3183901164 @default.
- W4387372192 hasRelatedWork W3192840557 @default.
- W4387372192 hasRelatedWork W3193565141 @default.
- W4387372192 hasRelatedWork W4206357785 @default.
- W4387372192 hasRelatedWork W4226493464 @default.
- W4387372192 hasRelatedWork W4281381188 @default.
- W4387372192 hasRelatedWork W4312417841 @default.
- W4387372192 isParatext "false" @default.
- W4387372192 isRetracted "false" @default.
- W4387372192 workType "article" @default.