Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387372208> ?p ?o ?g. }
- W4387372208 abstract "Abstract Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes a wide spectrum of illnesses ranging from pharyngitis and rheumatic fever to more invasive and severe diseases such as necrotizing fasciitis and toxic shock syndrome. Invasive outcomes of GAS infections often result from entry of the bacteria via an open wound into tissue and blood systems. The coagulation cascade serves as an innate defense mechanism that initiates fibrin clots to sequester bacteria and restrict its growth and prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize the specific virulence factors Plasminogen binding M-protein (PAM) and streptokinase (SK) to manipulate hemostasis and ultimately activate human plasminogen to cause fibrinolysis and escape from the fibrin clot. A major unresolved question regarding this process is to understand the temporal dynamics of how GAS that is enmeshed in a fibrin clot accesses host plasminogen for dissolution of the clot and eventual dissemination. Using fluorescently labeled plasminogen and fibrinogen, we established conditions to observe the process of fibrin clot dissolution by GAS (an AP53 CovR+S-strain) that is sequestered in a fibrin clot using real-time imaging microscopy. We hypothesized that initiation of fibrinolysis by GAS inside a fibrin clot would be determined by the rate of hPg access into the fibrin clot where bacteria are trapped. Our live imaging studies show that GAS trapped inside a fibrin clot, has limited access to hPg; however, at 4.25 h post incubation, when sufficient hPg is accessible to the bacterium, fibrinolysis quickly occurs. If hPg is bound to the bacterial surface prior to being trapped inside a clot, dissolution and bacterial dissemination occurs at a much faster rate of 2.5 h post incubation. During the time which bacteria are trapped in the clot without access to hPg, we did not observe any growth of GAS; however, we demonstrate that the bacteria continue to remain viable inside the fibrin clot. We performed RNA-seq analysis of GAS and the isogenic GAS SK-deficient mutant to understand SK-dependent transcriptional changes during the lag-phase of the GAS bacteria inside the fibrin clot. We observed a dramatic change in the transcription profile of wt GAS inside the fibrin clot over time prior to escape from the fibrin clot (22 gene expression changes at 4h, to 802 gene expression changes at 8h). Furthermore, we also identified gene expression changes that were distinct between wt GAS and the GAS SK-deficient mutant. Our findings reveal for the first time that GAS can engage a latent, growth suspended phase whereby physical structures such as fibrin clots and Neutrophil extracellular traps that immobilize an invading pathogen allow bacteria to remain viable and transcriptionally active for an extended time during host infection. GAS that is trapped in a fibrin clot will therefore enter a state in which the bacteria suspend growth, but remain viable, until sufficient access to hPg allow it to initiate fibrinolysis and escape into surrounding tissues. The viability of GAS while trapped and its readiness to avoid immune defenses allow GAS to act quickly to disseminate when host conditions are more favorable for the bacteria." @default.
- W4387372208 created "2023-10-06" @default.
- W4387372208 creator A5020583147 @default.
- W4387372208 creator A5046516087 @default.
- W4387372208 creator A5048170064 @default.
- W4387372208 creator A5050593261 @default.
- W4387372208 creator A5063535865 @default.
- W4387372208 creator A5071334202 @default.
- W4387372208 creator A5074871163 @default.
- W4387372208 creator A5081020729 @default.
- W4387372208 creator A5086046927 @default.
- W4387372208 creator A5088266692 @default.
- W4387372208 creator A5093009765 @default.
- W4387372208 date "2023-10-04" @default.
- W4387372208 modified "2023-10-12" @default.
- W4387372208 title "Group A Streptococcus remains viable inside fibrin clots and gains access to human plasminogen for subsequent fibrinolysis and dissemination" @default.
- W4387372208 cites W1039509417 @default.
- W4387372208 cites W111924924 @default.
- W4387372208 cites W141878679 @default.
- W4387372208 cites W1540908473 @default.
- W4387372208 cites W1542095353 @default.
- W4387372208 cites W1554351458 @default.
- W4387372208 cites W1561142717 @default.
- W4387372208 cites W1614733900 @default.
- W4387372208 cites W1637599331 @default.
- W4387372208 cites W1878063116 @default.
- W4387372208 cites W1979655424 @default.
- W4387372208 cites W1981417802 @default.
- W4387372208 cites W1986308133 @default.
- W4387372208 cites W1988697869 @default.
- W4387372208 cites W1999397857 @default.
- W4387372208 cites W2005624417 @default.
- W4387372208 cites W2008772260 @default.
- W4387372208 cites W2016701857 @default.
- W4387372208 cites W2025087073 @default.
- W4387372208 cites W2059312712 @default.
- W4387372208 cites W2060641896 @default.
- W4387372208 cites W2066335571 @default.
- W4387372208 cites W2068047966 @default.
- W4387372208 cites W2079128528 @default.
- W4387372208 cites W2084504159 @default.
- W4387372208 cites W2091639820 @default.
- W4387372208 cites W2095036479 @default.
- W4387372208 cites W2103647828 @default.
- W4387372208 cites W2107848687 @default.
- W4387372208 cites W2112425800 @default.
- W4387372208 cites W2112465016 @default.
- W4387372208 cites W2130246594 @default.
- W4387372208 cites W2140977850 @default.
- W4387372208 cites W2143464311 @default.
- W4387372208 cites W2145736155 @default.
- W4387372208 cites W2147115561 @default.
- W4387372208 cites W2148416676 @default.
- W4387372208 cites W2155372340 @default.
- W4387372208 cites W2161156455 @default.
- W4387372208 cites W2171780167 @default.
- W4387372208 cites W2340630661 @default.
- W4387372208 cites W2417535414 @default.
- W4387372208 cites W2565562997 @default.
- W4387372208 cites W2585870000 @default.
- W4387372208 cites W2738706416 @default.
- W4387372208 cites W2791482536 @default.
- W4387372208 cites W2801167439 @default.
- W4387372208 cites W2887344029 @default.
- W4387372208 cites W3007382208 @default.
- W4387372208 cites W3105157733 @default.
- W4387372208 cites W3105217395 @default.
- W4387372208 cites W3189920043 @default.
- W4387372208 doi "https://doi.org/10.1101/2023.10.04.560727" @default.
- W4387372208 hasPublicationYear "2023" @default.
- W4387372208 type Work @default.
- W4387372208 citedByCount "0" @default.
- W4387372208 crossrefType "posted-content" @default.
- W4387372208 hasAuthorship W4387372208A5020583147 @default.
- W4387372208 hasAuthorship W4387372208A5046516087 @default.
- W4387372208 hasAuthorship W4387372208A5048170064 @default.
- W4387372208 hasAuthorship W4387372208A5050593261 @default.
- W4387372208 hasAuthorship W4387372208A5063535865 @default.
- W4387372208 hasAuthorship W4387372208A5071334202 @default.
- W4387372208 hasAuthorship W4387372208A5074871163 @default.
- W4387372208 hasAuthorship W4387372208A5081020729 @default.
- W4387372208 hasAuthorship W4387372208A5086046927 @default.
- W4387372208 hasAuthorship W4387372208A5088266692 @default.
- W4387372208 hasAuthorship W4387372208A5093009765 @default.
- W4387372208 hasBestOaLocation W43873722081 @default.
- W4387372208 hasConcept C126322002 @default.
- W4387372208 hasConcept C185592680 @default.
- W4387372208 hasConcept C203014093 @default.
- W4387372208 hasConcept C2776825266 @default.
- W4387372208 hasConcept C2778382381 @default.
- W4387372208 hasConcept C2778589496 @default.
- W4387372208 hasConcept C2779036427 @default.
- W4387372208 hasConcept C54173615 @default.
- W4387372208 hasConcept C55493867 @default.
- W4387372208 hasConcept C71924100 @default.
- W4387372208 hasConcept C86803240 @default.
- W4387372208 hasConcept C89423630 @default.
- W4387372208 hasConceptScore W4387372208C126322002 @default.
- W4387372208 hasConceptScore W4387372208C185592680 @default.
- W4387372208 hasConceptScore W4387372208C203014093 @default.