Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387373324> ?p ?o ?g. }
- W4387373324 endingPage "4824" @default.
- W4387373324 startingPage "4824" @default.
- W4387373324 abstract "An accurate estimation of zenith wet delay (ZWD) is crucial for global navigation satellite system (GNSS) positioning and GNSS-based precipitable water vapor (PWV) inversion. The forecast Vienna Mapping Function 3 (VMF3-FC) is a forecast product provided by the Vienna Mapping Functions (VMF) data server based on the European Centre for Medium-Range Weather Forecasts (ECMWF)-based numerical weather prediction (NWP) model. The VMF3-FC can provide ZWD at any time and for any location worldwide; however, it has an uneven accuracy distribution and fails to match the application requirements in certain areas. To address this issue, in this study, a calibrated model for VMF3-FC ZWD, named the XZWD model, was developed by utilizing observation data from 492 radiosonde sites globally from 2019–2021 and the eXtreme Gradient Boosting (XGBoost) algorithm. The performance of the XZWD model was validated using 2022 observation data from the 492 radiosonde sites. The XZWD model yields a mean bias of −0.03 cm and a root-mean-square error (RMSE) of 1.64 cm. The XZWD model outperforms the global pressure and temperature 3 (GPT3) model, reducing the bias and RMSE by 94.64% and 58.90%, respectively. Meanwhile, the XZWD model outperforms VMF3-FC, with a reduction of 92.68% and 6.29% in bias and RMSE, respectively. Furthermore, the XZWD model reduces the impact of ZWD accuracy by latitude, height, and seasonal variations more effectively than the GPT3 model and VMF3-FC. Therefore, the XZWD model yields higher stability and accuracy in global ZWD forecasting." @default.
- W4387373324 created "2023-10-06" @default.
- W4387373324 creator A5043074821 @default.
- W4387373324 creator A5059723326 @default.
- W4387373324 creator A5063596859 @default.
- W4387373324 creator A5071145197 @default.
- W4387373324 creator A5087452082 @default.
- W4387373324 creator A5089053669 @default.
- W4387373324 date "2023-10-05" @default.
- W4387373324 modified "2023-10-16" @default.
- W4387373324 title "Machine Learning-Based Calibrated Model for Forecast Vienna Mapping Function 3 Zenith Wet Delay" @default.
- W4387373324 cites W1519855838 @default.
- W4387373324 cites W1530454118 @default.
- W4387373324 cites W1983985357 @default.
- W4387373324 cites W2068381607 @default.
- W4387373324 cites W2070493638 @default.
- W4387373324 cites W2081182187 @default.
- W4387373324 cites W2112306707 @default.
- W4387373324 cites W2119486063 @default.
- W4387373324 cites W2151947457 @default.
- W4387373324 cites W2248698344 @default.
- W4387373324 cites W2605301990 @default.
- W4387373324 cites W2755346628 @default.
- W4387373324 cites W2945265224 @default.
- W4387373324 cites W2970386345 @default.
- W4387373324 cites W3033309374 @default.
- W4387373324 cites W3091326895 @default.
- W4387373324 cites W3096854822 @default.
- W4387373324 cites W3102476541 @default.
- W4387373324 cites W3185664802 @default.
- W4387373324 cites W3189562144 @default.
- W4387373324 cites W3195529631 @default.
- W4387373324 cites W3204989967 @default.
- W4387373324 cites W3213625331 @default.
- W4387373324 cites W4200317390 @default.
- W4387373324 cites W4205126402 @default.
- W4387373324 cites W4206591196 @default.
- W4387373324 cites W4207039706 @default.
- W4387373324 cites W4213021097 @default.
- W4387373324 cites W4224003078 @default.
- W4387373324 cites W4224716462 @default.
- W4387373324 cites W4283327411 @default.
- W4387373324 cites W4285819087 @default.
- W4387373324 cites W4292489283 @default.
- W4387373324 cites W4292826038 @default.
- W4387373324 cites W4293252966 @default.
- W4387373324 cites W4303183234 @default.
- W4387373324 cites W4308501072 @default.
- W4387373324 cites W4309849630 @default.
- W4387373324 cites W4313372125 @default.
- W4387373324 cites W4313408216 @default.
- W4387373324 cites W4320718692 @default.
- W4387373324 cites W4324382896 @default.
- W4387373324 cites W4361219256 @default.
- W4387373324 cites W4361297523 @default.
- W4387373324 cites W4362581996 @default.
- W4387373324 cites W4365511977 @default.
- W4387373324 cites W4380879590 @default.
- W4387373324 cites W4382198440 @default.
- W4387373324 cites W4384131979 @default.
- W4387373324 cites W4384201819 @default.
- W4387373324 cites W4384408165 @default.
- W4387373324 cites W4386002970 @default.
- W4387373324 doi "https://doi.org/10.3390/rs15194824" @default.
- W4387373324 hasPublicationYear "2023" @default.
- W4387373324 type Work @default.
- W4387373324 citedByCount "0" @default.
- W4387373324 crossrefType "journal-article" @default.
- W4387373324 hasAuthorship W4387373324A5043074821 @default.
- W4387373324 hasAuthorship W4387373324A5059723326 @default.
- W4387373324 hasAuthorship W4387373324A5063596859 @default.
- W4387373324 hasAuthorship W4387373324A5071145197 @default.
- W4387373324 hasAuthorship W4387373324A5087452082 @default.
- W4387373324 hasAuthorship W4387373324A5089053669 @default.
- W4387373324 hasBestOaLocation W43873733241 @default.
- W4387373324 hasConcept C105795698 @default.
- W4387373324 hasConcept C11999413 @default.
- W4387373324 hasConcept C139945424 @default.
- W4387373324 hasConcept C14279187 @default.
- W4387373324 hasConcept C147534773 @default.
- W4387373324 hasConcept C147947694 @default.
- W4387373324 hasConcept C153294291 @default.
- W4387373324 hasConcept C156008332 @default.
- W4387373324 hasConcept C205649164 @default.
- W4387373324 hasConcept C33923547 @default.
- W4387373324 hasConcept C39432304 @default.
- W4387373324 hasConcept C41008148 @default.
- W4387373324 hasConcept C53970728 @default.
- W4387373324 hasConcept C60229501 @default.
- W4387373324 hasConcept C62649853 @default.
- W4387373324 hasConcept C76155785 @default.
- W4387373324 hasConceptScore W4387373324C105795698 @default.
- W4387373324 hasConceptScore W4387373324C11999413 @default.
- W4387373324 hasConceptScore W4387373324C139945424 @default.
- W4387373324 hasConceptScore W4387373324C14279187 @default.
- W4387373324 hasConceptScore W4387373324C147534773 @default.
- W4387373324 hasConceptScore W4387373324C147947694 @default.
- W4387373324 hasConceptScore W4387373324C153294291 @default.