Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387374426> ?p ?o ?g. }
- W4387374426 abstract "Abstract Background Computed tomography (CT) imaging and artificial intelligence (AI)-based analyses have aided in the diagnosis and prediction of the severity of COVID-19. However, the potential of AI-based CT quantification of pneumonia in assessing patients with COVID-19 has not yet been fully explored. This study aimed to investigate the potential of AI-based CT quantification of COVID-19 pneumonia to predict the critical outcomes and clinical characteristics of patients with residual lung lesions. Methods This retrospective cohort study included 1,200 hospitalized patients with COVID-19 from four hospitals. The incidence of critical outcomes (requiring the support of high-flow oxygen or invasive mechanical ventilation or death) and complications during hospitalization (bacterial infection, renal failure, heart failure, thromboembolism, and liver dysfunction) was compared between the groups of pneumonia with high/low-percentage lung lesions, based on AI-based CT quantification. Additionally, 198 patients underwent CT scans 3 months after admission to analyze prognostic factors for residual lung lesions. Results The pneumonia group with a high percentage of lung lesions (N = 400) had a higher incidence of critical outcomes and complications during hospitalization than the low percentage group (N = 800). Multivariable analysis demonstrated that AI-based CT quantification of pneumonia was independently associated with critical outcomes (adjusted odds ratio [aOR] 10.5, 95% confidence interval [CI] 5.59–19.7), as well as with oxygen requirement (aOR 6.35, 95% CI 4.60–8.76), IMV requirement (aOR 7.73, 95% CI 2.52–23.7), and mortality rate (aOR 6.46, 95% CI 1.87–22.3). Among patients with follow-up CT scans (N = 198), the multivariable analysis revealed that the pneumonia group with a high percentage of lung lesions on admission (aOR 4.74, 95% CI 2.36–9.52), older age (aOR 2.53, 95% CI 1.16–5.51), female sex (aOR 2.41, 95% CI 1.13–5.11), and medical history of hypertension (aOR 2.22, 95% CI 1.09–4.50) independently predicted persistent residual lung lesions. Conclusions AI-based CT quantification of pneumonia provides valuable information beyond qualitative evaluation by physicians, enabling the prediction of critical outcomes and residual lung lesions in patients with COVID-19." @default.
- W4387374426 created "2023-10-06" @default.
- W4387374426 creator A5011234417 @default.
- W4387374426 creator A5022377956 @default.
- W4387374426 creator A5023330443 @default.
- W4387374426 creator A5034221638 @default.
- W4387374426 creator A5034238510 @default.
- W4387374426 creator A5035900623 @default.
- W4387374426 creator A5036229553 @default.
- W4387374426 creator A5037133689 @default.
- W4387374426 creator A5037160876 @default.
- W4387374426 creator A5044262898 @default.
- W4387374426 creator A5044848785 @default.
- W4387374426 creator A5048532263 @default.
- W4387374426 creator A5048538074 @default.
- W4387374426 creator A5049929639 @default.
- W4387374426 creator A5050914261 @default.
- W4387374426 creator A5056834285 @default.
- W4387374426 creator A5059389959 @default.
- W4387374426 creator A5059598442 @default.
- W4387374426 creator A5060179089 @default.
- W4387374426 creator A5063794303 @default.
- W4387374426 creator A5069199914 @default.
- W4387374426 creator A5071627021 @default.
- W4387374426 creator A5073381036 @default.
- W4387374426 creator A5074838157 @default.
- W4387374426 creator A5078183716 @default.
- W4387374426 creator A5078928565 @default.
- W4387374426 creator A5078931094 @default.
- W4387374426 creator A5079890482 @default.
- W4387374426 creator A5085312702 @default.
- W4387374426 creator A5086254968 @default.
- W4387374426 creator A5086665187 @default.
- W4387374426 creator A5088167618 @default.
- W4387374426 creator A5090788230 @default.
- W4387374426 creator A5091161390 @default.
- W4387374426 date "2023-10-05" @default.
- W4387374426 modified "2023-10-14" @default.
- W4387374426 title "Clinical utilization of artificial intelligence-based COVID-19 pneumonia quantification using chest computed tomography – a multicenter retrospective cohort study in Japan" @default.
- W4387374426 cites W3001897055 @default.
- W4387374426 cites W3009728140 @default.
- W4387374426 cites W3010381061 @default.
- W4387374426 cites W3010637630 @default.
- W4387374426 cites W3014003872 @default.
- W4387374426 cites W3017116151 @default.
- W4387374426 cites W3020653337 @default.
- W4387374426 cites W3021298060 @default.
- W4387374426 cites W3024237443 @default.
- W4387374426 cites W3025000842 @default.
- W4387374426 cites W3027630905 @default.
- W4387374426 cites W3037791009 @default.
- W4387374426 cites W3040075864 @default.
- W4387374426 cites W3041493976 @default.
- W4387374426 cites W3043073991 @default.
- W4387374426 cites W3043192034 @default.
- W4387374426 cites W3045931425 @default.
- W4387374426 cites W3046460120 @default.
- W4387374426 cites W3049757379 @default.
- W4387374426 cites W3097673122 @default.
- W4387374426 cites W3117374033 @default.
- W4387374426 cites W3120158798 @default.
- W4387374426 cites W3127784112 @default.
- W4387374426 cites W3131057396 @default.
- W4387374426 cites W3133581044 @default.
- W4387374426 cites W3134839047 @default.
- W4387374426 cites W3137119208 @default.
- W4387374426 cites W3137636549 @default.
- W4387374426 cites W3141581303 @default.
- W4387374426 cites W3156276993 @default.
- W4387374426 cites W3159509602 @default.
- W4387374426 cites W3174208316 @default.
- W4387374426 cites W3177994761 @default.
- W4387374426 cites W3180241735 @default.
- W4387374426 cites W3186314395 @default.
- W4387374426 cites W3199923077 @default.
- W4387374426 cites W3202133856 @default.
- W4387374426 cites W3204397378 @default.
- W4387374426 cites W3211985738 @default.
- W4387374426 cites W4205590382 @default.
- W4387374426 cites W4206366529 @default.
- W4387374426 cites W4210642183 @default.
- W4387374426 cites W4220943757 @default.
- W4387374426 cites W4229453356 @default.
- W4387374426 cites W4285496397 @default.
- W4387374426 cites W4290737486 @default.
- W4387374426 cites W4294397787 @default.
- W4387374426 cites W4295068087 @default.
- W4387374426 cites W4309185687 @default.
- W4387374426 cites W4311244955 @default.
- W4387374426 cites W4316014106 @default.
- W4387374426 cites W4366607339 @default.
- W4387374426 cites W4367055505 @default.
- W4387374426 doi "https://doi.org/10.1186/s12931-023-02530-2" @default.
- W4387374426 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37798709" @default.
- W4387374426 hasPublicationYear "2023" @default.
- W4387374426 type Work @default.
- W4387374426 citedByCount "0" @default.
- W4387374426 crossrefType "journal-article" @default.
- W4387374426 hasAuthorship W4387374426A5011234417 @default.
- W4387374426 hasAuthorship W4387374426A5022377956 @default.