Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387378500> ?p ?o ?g. }
- W4387378500 endingPage "100509" @default.
- W4387378500 startingPage "100509" @default.
- W4387378500 abstract "The process of capturing and reducing carbon dioxide (CO2) emissions through chemical absorption is widely acknowledged as the most effective technique, especially in dealing with natural gas streams or flue gases produced by fossil fuel power plants. In this research, we delve into the modeling and optimization of CO2 mass transfer flux (NCO₂). To accomplish this, employed a combination of Piperazine (PZ) and Methyldiethanolamine (MDEA) amines for CO2 absorption. The approach utilized artificial neural networks (ANN) and response surface methodology (RSM). We used Pi-Buckingham theory to derive dimensionless numbers for the input variables in both ANNs and RSM. The resulting models offer satisfactory outcomes by effectively capturing the influence of independent variables and their interactions on the objective function, thereby optimizing the CO2 capture process. The RSM approach employs a quadratic model. Through optimization, neural networks were fine-tuned to achieve the lowest error and the closest fit to experimental data. Both ANNs and RSM models demonstrated acceptable performance in predicting experimental data, with maximum R2 values of 0.99924 and 0.9663, respectively. Considering the mean squared error of 5.2 × 10−4 obtained from the simulations, the ANN is recommended as the preferred method for developing absorption simulation models." @default.
- W4387378500 created "2023-10-06" @default.
- W4387378500 creator A5071414031 @default.
- W4387378500 creator A5092372102 @default.
- W4387378500 date "2023-12-01" @default.
- W4387378500 modified "2023-10-11" @default.
- W4387378500 title "Mixed MDEA-PZ amine solutions for CO2 capture: Modeling and optimization using RSM and ANN approaches" @default.
- W4387378500 cites W1127303842 @default.
- W4387378500 cites W1964541439 @default.
- W4387378500 cites W1973535761 @default.
- W4387378500 cites W1978318056 @default.
- W4387378500 cites W1987874405 @default.
- W4387378500 cites W2005873455 @default.
- W4387378500 cites W2007293683 @default.
- W4387378500 cites W2010989015 @default.
- W4387378500 cites W2016170823 @default.
- W4387378500 cites W2018313454 @default.
- W4387378500 cites W2020125671 @default.
- W4387378500 cites W2026791465 @default.
- W4387378500 cites W2030139715 @default.
- W4387378500 cites W2033656738 @default.
- W4387378500 cites W2045862072 @default.
- W4387378500 cites W2056432764 @default.
- W4387378500 cites W2067204133 @default.
- W4387378500 cites W2072837166 @default.
- W4387378500 cites W2076949647 @default.
- W4387378500 cites W2078237749 @default.
- W4387378500 cites W2081733273 @default.
- W4387378500 cites W2086492487 @default.
- W4387378500 cites W2090822958 @default.
- W4387378500 cites W2091013011 @default.
- W4387378500 cites W2113104335 @default.
- W4387378500 cites W2128084896 @default.
- W4387378500 cites W2151620834 @default.
- W4387378500 cites W2191207305 @default.
- W4387378500 cites W2281511485 @default.
- W4387378500 cites W2305927490 @default.
- W4387378500 cites W2312822505 @default.
- W4387378500 cites W2317350522 @default.
- W4387378500 cites W2324027338 @default.
- W4387378500 cites W2522863073 @default.
- W4387378500 cites W2599685446 @default.
- W4387378500 cites W2754560232 @default.
- W4387378500 cites W2760851698 @default.
- W4387378500 cites W2804942860 @default.
- W4387378500 cites W2806763967 @default.
- W4387378500 cites W2883406950 @default.
- W4387378500 cites W2883525495 @default.
- W4387378500 cites W2963881446 @default.
- W4387378500 cites W2987697234 @default.
- W4387378500 cites W3015585889 @default.
- W4387378500 cites W3100613483 @default.
- W4387378500 cites W3130316938 @default.
- W4387378500 cites W3162839695 @default.
- W4387378500 cites W396937515 @default.
- W4387378500 cites W4254697648 @default.
- W4387378500 cites W4319066294 @default.
- W4387378500 cites W4361291101 @default.
- W4387378500 cites W4378469509 @default.
- W4387378500 cites W4382753644 @default.
- W4387378500 cites W4385431566 @default.
- W4387378500 cites W4385814197 @default.
- W4387378500 doi "https://doi.org/10.1016/j.cscee.2023.100509" @default.
- W4387378500 hasPublicationYear "2023" @default.
- W4387378500 type Work @default.
- W4387378500 citedByCount "0" @default.
- W4387378500 crossrefType "journal-article" @default.
- W4387378500 hasAuthorship W4387378500A5071414031 @default.
- W4387378500 hasAuthorship W4387378500A5092372102 @default.
- W4387378500 hasBestOaLocation W43873785001 @default.
- W4387378500 hasConcept C105795698 @default.
- W4387378500 hasConcept C119857082 @default.
- W4387378500 hasConcept C121332964 @default.
- W4387378500 hasConcept C125287762 @default.
- W4387378500 hasConcept C127413603 @default.
- W4387378500 hasConcept C131779359 @default.
- W4387378500 hasConcept C139945424 @default.
- W4387378500 hasConcept C150077022 @default.
- W4387378500 hasConcept C159985019 @default.
- W4387378500 hasConcept C167206829 @default.
- W4387378500 hasConcept C178790620 @default.
- W4387378500 hasConcept C185592680 @default.
- W4387378500 hasConcept C186060115 @default.
- W4387378500 hasConcept C192562407 @default.
- W4387378500 hasConcept C24872484 @default.
- W4387378500 hasConcept C33923547 @default.
- W4387378500 hasConcept C41008148 @default.
- W4387378500 hasConcept C50644808 @default.
- W4387378500 hasConcept C86803240 @default.
- W4387378500 hasConcept C87717796 @default.
- W4387378500 hasConcept C97355855 @default.
- W4387378500 hasConceptScore W4387378500C105795698 @default.
- W4387378500 hasConceptScore W4387378500C119857082 @default.
- W4387378500 hasConceptScore W4387378500C121332964 @default.
- W4387378500 hasConceptScore W4387378500C125287762 @default.
- W4387378500 hasConceptScore W4387378500C127413603 @default.
- W4387378500 hasConceptScore W4387378500C131779359 @default.
- W4387378500 hasConceptScore W4387378500C139945424 @default.