Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387378502> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4387378502 endingPage "109640" @default.
- W4387378502 startingPage "109640" @default.
- W4387378502 abstract "Chest X-ray images are a valuable tool for accurately and efficiently diagnosing Covid-19 with the assistance of computer technology. These images enable the detection of diseases in internal organs, particularly the lungs, by providing crucial information about the pathological state of the lungs and other internal organs and tissues. Segmentation plays an essential role in the earliest stages of disease detection through computer-assisted analysis of medical images. This method enables the extraction of significant elements from the image, facilitating the identification of relevant areas. In the subsequent stage, healthcare professionals might acquire more precise diagnosis outcomes. Deep learning plays a significant role in developing models to achieve exact and efficient diagnostic results in picture segmentation and image classification procedures. However, using deep learning models in the image segmentation process necessitates the availability of image datasets and ground truth that radiologists have validated to facilitate the training process. The dataset provided in this article comprises 292 chest X-ray images obtained from Airlangga University Hospital in Indonesia. These images are accompanied with ground truth data that has been meticulously verified by radiologists. The offered X-ray images encompass those of patients diagnosed with Covid-19, pneumonia and those representing normal conditions. The provided dataset exhibits potential utility in advancing artificial intelligence techniques for segmentation and classification procedures." @default.
- W4387378502 created "2023-10-06" @default.
- W4387378502 creator A5002265269 @default.
- W4387378502 creator A5015968159 @default.
- W4387378502 creator A5035911229 @default.
- W4387378502 creator A5036876158 @default.
- W4387378502 creator A5049962836 @default.
- W4387378502 creator A5057755684 @default.
- W4387378502 creator A5093011112 @default.
- W4387378502 date "2023-12-01" @default.
- W4387378502 modified "2023-10-17" @default.
- W4387378502 title "Chest X-Ray Dataset and Ground Truth for Lung Segmentation" @default.
- W4387378502 cites W4382137291 @default.
- W4387378502 doi "https://doi.org/10.1016/j.dib.2023.109640" @default.
- W4387378502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37840987" @default.
- W4387378502 hasPublicationYear "2023" @default.
- W4387378502 type Work @default.
- W4387378502 citedByCount "0" @default.
- W4387378502 crossrefType "journal-article" @default.
- W4387378502 hasAuthorship W4387378502A5002265269 @default.
- W4387378502 hasAuthorship W4387378502A5015968159 @default.
- W4387378502 hasAuthorship W4387378502A5035911229 @default.
- W4387378502 hasAuthorship W4387378502A5036876158 @default.
- W4387378502 hasAuthorship W4387378502A5049962836 @default.
- W4387378502 hasAuthorship W4387378502A5057755684 @default.
- W4387378502 hasAuthorship W4387378502A5093011112 @default.
- W4387378502 hasBestOaLocation W43873785021 @default.
- W4387378502 hasConcept C108583219 @default.
- W4387378502 hasConcept C111919701 @default.
- W4387378502 hasConcept C116834253 @default.
- W4387378502 hasConcept C124504099 @default.
- W4387378502 hasConcept C126838900 @default.
- W4387378502 hasConcept C142724271 @default.
- W4387378502 hasConcept C146849305 @default.
- W4387378502 hasConcept C153180895 @default.
- W4387378502 hasConcept C154945302 @default.
- W4387378502 hasConcept C2779134260 @default.
- W4387378502 hasConcept C3008058167 @default.
- W4387378502 hasConcept C31601959 @default.
- W4387378502 hasConcept C31972630 @default.
- W4387378502 hasConcept C41008148 @default.
- W4387378502 hasConcept C524204448 @default.
- W4387378502 hasConcept C59822182 @default.
- W4387378502 hasConcept C71924100 @default.
- W4387378502 hasConcept C86803240 @default.
- W4387378502 hasConcept C89600930 @default.
- W4387378502 hasConcept C98045186 @default.
- W4387378502 hasConceptScore W4387378502C108583219 @default.
- W4387378502 hasConceptScore W4387378502C111919701 @default.
- W4387378502 hasConceptScore W4387378502C116834253 @default.
- W4387378502 hasConceptScore W4387378502C124504099 @default.
- W4387378502 hasConceptScore W4387378502C126838900 @default.
- W4387378502 hasConceptScore W4387378502C142724271 @default.
- W4387378502 hasConceptScore W4387378502C146849305 @default.
- W4387378502 hasConceptScore W4387378502C153180895 @default.
- W4387378502 hasConceptScore W4387378502C154945302 @default.
- W4387378502 hasConceptScore W4387378502C2779134260 @default.
- W4387378502 hasConceptScore W4387378502C3008058167 @default.
- W4387378502 hasConceptScore W4387378502C31601959 @default.
- W4387378502 hasConceptScore W4387378502C31972630 @default.
- W4387378502 hasConceptScore W4387378502C41008148 @default.
- W4387378502 hasConceptScore W4387378502C524204448 @default.
- W4387378502 hasConceptScore W4387378502C59822182 @default.
- W4387378502 hasConceptScore W4387378502C71924100 @default.
- W4387378502 hasConceptScore W4387378502C86803240 @default.
- W4387378502 hasConceptScore W4387378502C89600930 @default.
- W4387378502 hasConceptScore W4387378502C98045186 @default.
- W4387378502 hasLocation W43873785021 @default.
- W4387378502 hasLocation W43873785022 @default.
- W4387378502 hasOpenAccess W4387378502 @default.
- W4387378502 hasPrimaryLocation W43873785021 @default.
- W4387378502 hasRelatedWork W1522196789 @default.
- W4387378502 hasRelatedWork W1997160662 @default.
- W4387378502 hasRelatedWork W2063823869 @default.
- W4387378502 hasRelatedWork W3003847115 @default.
- W4387378502 hasRelatedWork W3024479225 @default.
- W4387378502 hasRelatedWork W3133954817 @default.
- W4387378502 hasRelatedWork W3171371563 @default.
- W4387378502 hasRelatedWork W4295532600 @default.
- W4387378502 hasRelatedWork W4313447631 @default.
- W4387378502 hasRelatedWork W4315434538 @default.
- W4387378502 hasVolume "51" @default.
- W4387378502 isParatext "false" @default.
- W4387378502 isRetracted "false" @default.
- W4387378502 workType "article" @default.