Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387382221> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4387382221 endingPage "260" @default.
- W4387382221 startingPage "245" @default.
- W4387382221 abstract "This study uses a machine learning (ML) ensemble modeling approach to predict porosity from multiple seismic attributes in one of the most promising Main Dolomite hydrocarbon reservoirs in NW Poland. The presented workflow tests five different model types of varying complexity: K-nearest neighbors (KNN), random forests (RF), extreme gradient boosting (XGB), support vector machine (SVM), single layer neural network with multilayer perceptron (MLP). The selected models are additionally run with different configurations originating from the pre-processing stage, including Yeo–Johnson transformation (YJ) and principal component analysis (PCA). The race ANOVA method across resample data is used to tune the best hyperparameters for each model. The model candidates and the role of different pre-processors are evaluated based on standard ML metrics – coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The model stacking is performed on five model candidates: two KNN, two XGB, and one SVM PCA with a marginal role. The results of the ensemble model showed superior accuracy over single learners, with all metrics (R2 0.890, RMSE 0.0252, MAE 0.168). It also turned out to be almost three times better than the neural net (NN) results obtained from commercial software on the same testing set (R2 0.318, RMSE 0.0628, MAE 0.0487). The spatial distribution of porosity from the ensemble model indicated areas of good reservoir properties that overlap with hydrocarbon production fields. This observation completes the evaluation of the ensemble technique results from model metrics. Overall, the proposed solution is a promising tool for better porosity prediction and understanding of heterogeneous carbonate reservoirs from multiple seismic attributes." @default.
- W4387382221 created "2023-10-06" @default.
- W4387382221 creator A5042836948 @default.
- W4387382221 creator A5060495814 @default.
- W4387382221 date "2023-09-06" @default.
- W4387382221 modified "2023-10-16" @default.
- W4387382221 title "An advanced ensemble modeling approach for predicting carbonate reservoir porosity from seismic attributes" @default.
- W4387382221 doi "https://doi.org/10.7494/geol.2023.49.3.245" @default.
- W4387382221 hasPublicationYear "2023" @default.
- W4387382221 type Work @default.
- W4387382221 citedByCount "0" @default.
- W4387382221 crossrefType "journal-article" @default.
- W4387382221 hasAuthorship W4387382221A5042836948 @default.
- W4387382221 hasAuthorship W4387382221A5060495814 @default.
- W4387382221 hasBestOaLocation W43873822211 @default.
- W4387382221 hasConcept C105795698 @default.
- W4387382221 hasConcept C11413529 @default.
- W4387382221 hasConcept C119898033 @default.
- W4387382221 hasConcept C12267149 @default.
- W4387382221 hasConcept C139945424 @default.
- W4387382221 hasConcept C153180895 @default.
- W4387382221 hasConcept C154945302 @default.
- W4387382221 hasConcept C169258074 @default.
- W4387382221 hasConcept C179717631 @default.
- W4387382221 hasConcept C27438332 @default.
- W4387382221 hasConcept C33923547 @default.
- W4387382221 hasConcept C41008148 @default.
- W4387382221 hasConcept C45942800 @default.
- W4387382221 hasConcept C50644808 @default.
- W4387382221 hasConcept C60908668 @default.
- W4387382221 hasConceptScore W4387382221C105795698 @default.
- W4387382221 hasConceptScore W4387382221C11413529 @default.
- W4387382221 hasConceptScore W4387382221C119898033 @default.
- W4387382221 hasConceptScore W4387382221C12267149 @default.
- W4387382221 hasConceptScore W4387382221C139945424 @default.
- W4387382221 hasConceptScore W4387382221C153180895 @default.
- W4387382221 hasConceptScore W4387382221C154945302 @default.
- W4387382221 hasConceptScore W4387382221C169258074 @default.
- W4387382221 hasConceptScore W4387382221C179717631 @default.
- W4387382221 hasConceptScore W4387382221C27438332 @default.
- W4387382221 hasConceptScore W4387382221C33923547 @default.
- W4387382221 hasConceptScore W4387382221C41008148 @default.
- W4387382221 hasConceptScore W4387382221C45942800 @default.
- W4387382221 hasConceptScore W4387382221C50644808 @default.
- W4387382221 hasConceptScore W4387382221C60908668 @default.
- W4387382221 hasIssue "3" @default.
- W4387382221 hasLocation W43873822211 @default.
- W4387382221 hasOpenAccess W4387382221 @default.
- W4387382221 hasPrimaryLocation W43873822211 @default.
- W4387382221 hasRelatedWork W1807784185 @default.
- W4387382221 hasRelatedWork W2099182244 @default.
- W4387382221 hasRelatedWork W2188759683 @default.
- W4387382221 hasRelatedWork W2794896638 @default.
- W4387382221 hasRelatedWork W2944292463 @default.
- W4387382221 hasRelatedWork W3014252901 @default.
- W4387382221 hasRelatedWork W3202800081 @default.
- W4387382221 hasRelatedWork W3208169454 @default.
- W4387382221 hasRelatedWork W4317376680 @default.
- W4387382221 hasRelatedWork W4360777922 @default.
- W4387382221 hasVolume "49" @default.
- W4387382221 isParatext "false" @default.
- W4387382221 isRetracted "false" @default.
- W4387382221 workType "article" @default.