Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387384901> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4387384901 abstract "In light of the growing global diabetes epidemic, there is a pressing need for enhanced diagnostic tools and methods. Enter machine learning, which, with its data-driven predictive capabilities, can serve as a powerful ally in the battle against this chronic condition. This research took advantage of the Pima Indians Diabetes Data Set, which captures diverse patient information, both diabetic and non-diabetic. Leveraging this dataset, we undertook a rigorous comparative assessment of six dominant machine learning algorithms, specifically: Support Vector Machine, Artificial Neural Networks, Decision Tree, Random Forest, Logistic Regression, and Naive Bayes. Aiming for precision, we introduced principal component analysis to the workflow, enabling strategic dimensionality reduction and thus spotlighting the most salient data features. Upon completion of our analysis, it became evident that the Random Forest algorithm stood out, achieving an exemplary accuracy rate of 98.6% when 'BP' and 'SKIN' attributes were set aside. This discovery prompts a crucial discussion: not all data attributes weigh equally in their predictive value, and a discerning approach to feature selection can significantly optimize outcomes. Concluding, this study underscores the potential and efficiency of machine learning in diabetes diagnosis. With Random Forest leading the pack in accuracy, there's a compelling case to further embed such computational techniques in healthcare diagnostics, ushering in an era of enhanced patient care." @default.
- W4387384901 created "2023-10-06" @default.
- W4387384901 creator A5072737127 @default.
- W4387384901 creator A5075090072 @default.
- W4387384901 creator A5081405010 @default.
- W4387384901 creator A5093012810 @default.
- W4387384901 date "2023-01-01" @default.
- W4387384901 modified "2023-10-16" @default.
- W4387384901 title "Machine Learning Techniques for Diabetes Classification: A Comparative Study" @default.
- W4387384901 doi "https://doi.org/10.14569/ijacsa.2023.0140982" @default.
- W4387384901 hasPublicationYear "2023" @default.
- W4387384901 type Work @default.
- W4387384901 citedByCount "0" @default.
- W4387384901 crossrefType "journal-article" @default.
- W4387384901 hasAuthorship W4387384901A5072737127 @default.
- W4387384901 hasAuthorship W4387384901A5075090072 @default.
- W4387384901 hasAuthorship W4387384901A5081405010 @default.
- W4387384901 hasAuthorship W4387384901A5093012810 @default.
- W4387384901 hasBestOaLocation W43873849011 @default.
- W4387384901 hasConcept C119857082 @default.
- W4387384901 hasConcept C12267149 @default.
- W4387384901 hasConcept C124101348 @default.
- W4387384901 hasConcept C148483581 @default.
- W4387384901 hasConcept C154945302 @default.
- W4387384901 hasConcept C169258074 @default.
- W4387384901 hasConcept C177212765 @default.
- W4387384901 hasConcept C41008148 @default.
- W4387384901 hasConcept C52001869 @default.
- W4387384901 hasConcept C58489278 @default.
- W4387384901 hasConcept C70518039 @default.
- W4387384901 hasConcept C77088390 @default.
- W4387384901 hasConcept C84525736 @default.
- W4387384901 hasConceptScore W4387384901C119857082 @default.
- W4387384901 hasConceptScore W4387384901C12267149 @default.
- W4387384901 hasConceptScore W4387384901C124101348 @default.
- W4387384901 hasConceptScore W4387384901C148483581 @default.
- W4387384901 hasConceptScore W4387384901C154945302 @default.
- W4387384901 hasConceptScore W4387384901C169258074 @default.
- W4387384901 hasConceptScore W4387384901C177212765 @default.
- W4387384901 hasConceptScore W4387384901C41008148 @default.
- W4387384901 hasConceptScore W4387384901C52001869 @default.
- W4387384901 hasConceptScore W4387384901C58489278 @default.
- W4387384901 hasConceptScore W4387384901C70518039 @default.
- W4387384901 hasConceptScore W4387384901C77088390 @default.
- W4387384901 hasConceptScore W4387384901C84525736 @default.
- W4387384901 hasIssue "9" @default.
- W4387384901 hasLocation W43873849011 @default.
- W4387384901 hasOpenAccess W4387384901 @default.
- W4387384901 hasPrimaryLocation W43873849011 @default.
- W4387384901 hasRelatedWork W2780266336 @default.
- W4387384901 hasRelatedWork W2970562883 @default.
- W4387384901 hasRelatedWork W3036529732 @default.
- W4387384901 hasRelatedWork W3154045278 @default.
- W4387384901 hasRelatedWork W3210764983 @default.
- W4387384901 hasRelatedWork W4285162676 @default.
- W4387384901 hasRelatedWork W4367335949 @default.
- W4387384901 hasRelatedWork W4367336074 @default.
- W4387384901 hasRelatedWork W4379620016 @default.
- W4387384901 hasRelatedWork W4382052559 @default.
- W4387384901 hasVolume "14" @default.
- W4387384901 isParatext "false" @default.
- W4387384901 isRetracted "false" @default.
- W4387384901 workType "article" @default.