Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387385586> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4387385586 endingPage "1" @default.
- W4387385586 startingPage "1" @default.
- W4387385586 abstract "In the era of big data, Deep Learning (DL) technology has achieved breakthroughs in various tasks involving electromagnetic analysis and recognition signals. However, in practical application scenarios, intercepting and labeling electromagnetic signals is difficult, which is challenging to reach excellent performance for DL models as they require lots of samples. Therefore, in this paper, we study few-shot individual identification and propose a Feature Correlation Graph Convolution Network (FCGCN) method to solve this problem. Specifically, the proposed method includes graph structure mapping and identification classification. In more detail, the former is based on expert feature extraction and correlation coefficient calculation whereas the latter is based on the designed Graph Convolution Network (GCN) model. The experimental results, after applying the proposed method on the simulated 5G User Equipment (UE) signal dataset, show that the graph structure can fully represent the deviation between signals of different classes and the correlation within a single class. Moreover, this method reveals better performance in few-shot recognition than existing methods. When the number of samples in each category is 40, the average recognition accuracy of the different Signal-to-Noise-Ratios (SNRs) is 7% higher than that of the baseline model, and it gives better results under low SNR." @default.
- W4387385586 created "2023-10-06" @default.
- W4387385586 creator A5000550322 @default.
- W4387385586 creator A5058824414 @default.
- W4387385586 creator A5076375500 @default.
- W4387385586 creator A5088090343 @default.
- W4387385586 creator A5089925486 @default.
- W4387385586 date "2023-01-01" @default.
- W4387385586 modified "2023-10-16" @default.
- W4387385586 title "FCGCN: Feature Correlation Graph Convolution Network for Few-Shot Individual Identification" @default.
- W4387385586 doi "https://doi.org/10.1109/tce.2023.3322224" @default.
- W4387385586 hasPublicationYear "2023" @default.
- W4387385586 type Work @default.
- W4387385586 citedByCount "0" @default.
- W4387385586 crossrefType "journal-article" @default.
- W4387385586 hasAuthorship W4387385586A5000550322 @default.
- W4387385586 hasAuthorship W4387385586A5058824414 @default.
- W4387385586 hasAuthorship W4387385586A5076375500 @default.
- W4387385586 hasAuthorship W4387385586A5088090343 @default.
- W4387385586 hasAuthorship W4387385586A5089925486 @default.
- W4387385586 hasConcept C11413529 @default.
- W4387385586 hasConcept C117220453 @default.
- W4387385586 hasConcept C119857082 @default.
- W4387385586 hasConcept C132525143 @default.
- W4387385586 hasConcept C138885662 @default.
- W4387385586 hasConcept C153180895 @default.
- W4387385586 hasConcept C154945302 @default.
- W4387385586 hasConcept C2524010 @default.
- W4387385586 hasConcept C2776401178 @default.
- W4387385586 hasConcept C2780092901 @default.
- W4387385586 hasConcept C33923547 @default.
- W4387385586 hasConcept C41008148 @default.
- W4387385586 hasConcept C41895202 @default.
- W4387385586 hasConcept C45347329 @default.
- W4387385586 hasConcept C50644808 @default.
- W4387385586 hasConcept C52622490 @default.
- W4387385586 hasConcept C80444323 @default.
- W4387385586 hasConceptScore W4387385586C11413529 @default.
- W4387385586 hasConceptScore W4387385586C117220453 @default.
- W4387385586 hasConceptScore W4387385586C119857082 @default.
- W4387385586 hasConceptScore W4387385586C132525143 @default.
- W4387385586 hasConceptScore W4387385586C138885662 @default.
- W4387385586 hasConceptScore W4387385586C153180895 @default.
- W4387385586 hasConceptScore W4387385586C154945302 @default.
- W4387385586 hasConceptScore W4387385586C2524010 @default.
- W4387385586 hasConceptScore W4387385586C2776401178 @default.
- W4387385586 hasConceptScore W4387385586C2780092901 @default.
- W4387385586 hasConceptScore W4387385586C33923547 @default.
- W4387385586 hasConceptScore W4387385586C41008148 @default.
- W4387385586 hasConceptScore W4387385586C41895202 @default.
- W4387385586 hasConceptScore W4387385586C45347329 @default.
- W4387385586 hasConceptScore W4387385586C50644808 @default.
- W4387385586 hasConceptScore W4387385586C52622490 @default.
- W4387385586 hasConceptScore W4387385586C80444323 @default.
- W4387385586 hasFunder F4320321001 @default.
- W4387385586 hasLocation W43873855861 @default.
- W4387385586 hasOpenAccess W4387385586 @default.
- W4387385586 hasPrimaryLocation W43873855861 @default.
- W4387385586 hasRelatedWork W1488551807 @default.
- W4387385586 hasRelatedWork W2004222917 @default.
- W4387385586 hasRelatedWork W2021013714 @default.
- W4387385586 hasRelatedWork W2359856669 @default.
- W4387385586 hasRelatedWork W2372194214 @default.
- W4387385586 hasRelatedWork W2412250669 @default.
- W4387385586 hasRelatedWork W2413516250 @default.
- W4387385586 hasRelatedWork W2560331580 @default.
- W4387385586 hasRelatedWork W3081640970 @default.
- W4387385586 hasRelatedWork W4200439127 @default.
- W4387385586 isParatext "false" @default.
- W4387385586 isRetracted "false" @default.
- W4387385586 workType "article" @default.