Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387385593> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4387385593 endingPage "1" @default.
- W4387385593 startingPage "1" @default.
- W4387385593 abstract "Incomplete or outdated inventories of railway infrastructures may disrupt the railway sector’s administration and maintenance of transportation infrastructure, thus posing potential threats to the safety of traffic networks. Previous studies have adopted point clouds to accelerate inventory and inspection automation procedures. However, owing to the complexity of the railway scenes, previous studies reveal an imbalance between semantic richness, segmentation accuracy, and processing efficiency. This study aims to advance our understanding by providing a deep-learning framework for railway point cloud semantic segmentation. The proposed framework, named RailSeg, encompasses point cloud downsampling, integrated local-global feature extraction, spatial context aggregation, and semantic regularization. The proposed method, validated using point clouds collected in suburban and rural scenes, generates a point-level railway furniture inventory of 11 categories and achieves competitive performance in overall accuracy and mean intersection over union. In addition, RailSeg achieves better results than the baseline for additional types of point clouds (i.e., plateau railway mobile laser scanning (MLS) point clouds, street MLS point clouds, and urban-scale photogrammetric point clouds), demonstrating the superior generalization capabilities of RailSeg. This study may contribute to the development of 3D semantic segmentation, digital railway, and intelligent transportation." @default.
- W4387385593 created "2023-10-06" @default.
- W4387385593 creator A5000684894 @default.
- W4387385593 creator A5019703318 @default.
- W4387385593 creator A5033550689 @default.
- W4387385593 creator A5046173212 @default.
- W4387385593 creator A5049963367 @default.
- W4387385593 creator A5060490956 @default.
- W4387385593 creator A5062901935 @default.
- W4387385593 creator A5070710188 @default.
- W4387385593 creator A5071725895 @default.
- W4387385593 creator A5082496274 @default.
- W4387385593 date "2023-01-01" @default.
- W4387385593 modified "2023-10-09" @default.
- W4387385593 title "RailSeg: Learning Local-Global Feature Aggregation with Contextual Information for Railway Point Cloud Semantic Segmentation" @default.
- W4387385593 doi "https://doi.org/10.1109/tgrs.2023.3319950" @default.
- W4387385593 hasPublicationYear "2023" @default.
- W4387385593 type Work @default.
- W4387385593 citedByCount "0" @default.
- W4387385593 crossrefType "journal-article" @default.
- W4387385593 hasAuthorship W4387385593A5000684894 @default.
- W4387385593 hasAuthorship W4387385593A5019703318 @default.
- W4387385593 hasAuthorship W4387385593A5033550689 @default.
- W4387385593 hasAuthorship W4387385593A5046173212 @default.
- W4387385593 hasAuthorship W4387385593A5049963367 @default.
- W4387385593 hasAuthorship W4387385593A5060490956 @default.
- W4387385593 hasAuthorship W4387385593A5062901935 @default.
- W4387385593 hasAuthorship W4387385593A5070710188 @default.
- W4387385593 hasAuthorship W4387385593A5071725895 @default.
- W4387385593 hasAuthorship W4387385593A5082496274 @default.
- W4387385593 hasConcept C124101348 @default.
- W4387385593 hasConcept C131979681 @default.
- W4387385593 hasConcept C154945302 @default.
- W4387385593 hasConcept C166957645 @default.
- W4387385593 hasConcept C205649164 @default.
- W4387385593 hasConcept C2779343474 @default.
- W4387385593 hasConcept C41008148 @default.
- W4387385593 hasConcept C89600930 @default.
- W4387385593 hasConceptScore W4387385593C124101348 @default.
- W4387385593 hasConceptScore W4387385593C131979681 @default.
- W4387385593 hasConceptScore W4387385593C154945302 @default.
- W4387385593 hasConceptScore W4387385593C166957645 @default.
- W4387385593 hasConceptScore W4387385593C205649164 @default.
- W4387385593 hasConceptScore W4387385593C2779343474 @default.
- W4387385593 hasConceptScore W4387385593C41008148 @default.
- W4387385593 hasConceptScore W4387385593C89600930 @default.
- W4387385593 hasFunder F4320321001 @default.
- W4387385593 hasLocation W43873855931 @default.
- W4387385593 hasOpenAccess W4387385593 @default.
- W4387385593 hasPrimaryLocation W43873855931 @default.
- W4387385593 hasRelatedWork W2005998065 @default.
- W4387385593 hasRelatedWork W2562256921 @default.
- W4387385593 hasRelatedWork W2626737336 @default.
- W4387385593 hasRelatedWork W2862230042 @default.
- W4387385593 hasRelatedWork W2936725271 @default.
- W4387385593 hasRelatedWork W2979603868 @default.
- W4387385593 hasRelatedWork W2980582925 @default.
- W4387385593 hasRelatedWork W3016928466 @default.
- W4387385593 hasRelatedWork W3126423817 @default.
- W4387385593 hasRelatedWork W3150655618 @default.
- W4387385593 isParatext "false" @default.
- W4387385593 isRetracted "false" @default.
- W4387385593 workType "article" @default.