Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387386950> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4387386950 abstract "Researchers at Oak Ridge National Laboratory (ORNL) created data as part of the MUSE (Multi-Agency Urban Search Experiment Detector and Algorithm Test Bed) project simulating illicit nuclear materials located in various buildings along a road. In the simulation, a truck containing a radiation detector drives down the road gathering listmode data (counting the and energy of incident gamma radiation). Building materials, source shielding, driving speed, truck direction, truck location on the road, source type, and source placement are all varied between runs of the data set. This data was created using deterministic neutron transport and Monte Carlo methods through a combination of SCALE, MAVRIC, MCNP, and GADRAS. As part of a follow-on NA-22 project, two Kaggle competitions were created to determine the best algorithms for finding and identifying gamma sources in this simulated urban environment. The winning algorithm was neural network-based and had a test accuracy of 76.4% accuracy for source identification. This work seeks to build upon this work and improve the results through the application of novel machine learning techniques. As a first step, the data was classified by a simple Convolutional Neural Network (CNN) To accomplish this, the data was first preprocessed into “waterfall plots.” These plots are composed of energy vs count plots that are stacked vertically to show progression in time. The horizontal axis indicating the particle energy incorporated user defined bin spacing with options for in linear-, logarithmic-, square root-, and user-spaced bins. The z or color dimension showed the number of counts corresponding the energy-time combination. This data was then used to generate more data, by generating a local estimate of the mean of the distribution for a bin and then randomly re-sampling that bin from a Poisson distribution. Once all of this data was generated, it was fed into a well-known CNN architecture, ResNet50. The output layer of this model was removed and replaced with layers corresponding to the shape desired isotope outputs. The provided training data was used to train the classifier and the remaining testing data was used to evaluate the model. Results are soon to be forthcoming." @default.
- W4387386950 created "2023-10-06" @default.
- W4387386950 creator A5019437238 @default.
- W4387386950 creator A5050516070 @default.
- W4387386950 creator A5063191000 @default.
- W4387386950 creator A5090291423 @default.
- W4387386950 date "2020-07-31" @default.
- W4387386950 modified "2023-10-16" @default.
- W4387386950 title "Neural MUSE Analysis" @default.
- W4387386950 doi "https://doi.org/10.2172/1997998" @default.
- W4387386950 hasPublicationYear "2020" @default.
- W4387386950 type Work @default.
- W4387386950 citedByCount "0" @default.
- W4387386950 crossrefType "report" @default.
- W4387386950 hasAuthorship W4387386950A5019437238 @default.
- W4387386950 hasAuthorship W4387386950A5050516070 @default.
- W4387386950 hasAuthorship W4387386950A5063191000 @default.
- W4387386950 hasAuthorship W4387386950A5090291423 @default.
- W4387386950 hasConcept C105795698 @default.
- W4387386950 hasConcept C11413529 @default.
- W4387386950 hasConcept C127413603 @default.
- W4387386950 hasConcept C154945302 @default.
- W4387386950 hasConcept C171146098 @default.
- W4387386950 hasConcept C19499675 @default.
- W4387386950 hasConcept C33923547 @default.
- W4387386950 hasConcept C41008148 @default.
- W4387386950 hasConcept C44154836 @default.
- W4387386950 hasConcept C50644808 @default.
- W4387386950 hasConcept C52121051 @default.
- W4387386950 hasConcept C76155785 @default.
- W4387386950 hasConcept C81363708 @default.
- W4387386950 hasConcept C94915269 @default.
- W4387386950 hasConceptScore W4387386950C105795698 @default.
- W4387386950 hasConceptScore W4387386950C11413529 @default.
- W4387386950 hasConceptScore W4387386950C127413603 @default.
- W4387386950 hasConceptScore W4387386950C154945302 @default.
- W4387386950 hasConceptScore W4387386950C171146098 @default.
- W4387386950 hasConceptScore W4387386950C19499675 @default.
- W4387386950 hasConceptScore W4387386950C33923547 @default.
- W4387386950 hasConceptScore W4387386950C41008148 @default.
- W4387386950 hasConceptScore W4387386950C44154836 @default.
- W4387386950 hasConceptScore W4387386950C50644808 @default.
- W4387386950 hasConceptScore W4387386950C52121051 @default.
- W4387386950 hasConceptScore W4387386950C76155785 @default.
- W4387386950 hasConceptScore W4387386950C81363708 @default.
- W4387386950 hasConceptScore W4387386950C94915269 @default.
- W4387386950 hasLocation W43873869501 @default.
- W4387386950 hasOpenAccess W4387386950 @default.
- W4387386950 hasPrimaryLocation W43873869501 @default.
- W4387386950 hasRelatedWork W1588474856 @default.
- W4387386950 hasRelatedWork W1968776045 @default.
- W4387386950 hasRelatedWork W2133675512 @default.
- W4387386950 hasRelatedWork W2296713838 @default.
- W4387386950 hasRelatedWork W2357934771 @default.
- W4387386950 hasRelatedWork W2889950528 @default.
- W4387386950 hasRelatedWork W3036261569 @default.
- W4387386950 hasRelatedWork W4297672583 @default.
- W4387386950 hasRelatedWork W575062473 @default.
- W4387386950 hasRelatedWork W767149399 @default.
- W4387386950 isParatext "false" @default.
- W4387386950 isRetracted "false" @default.
- W4387386950 workType "report" @default.