Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387389968> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4387389968 abstract "Neural Bayes estimators are neural networks that approximate Bayes estimators in a fast and likelihood-free manner. They are appealing to use with spatial models and data, where estimation is often a computational bottleneck. However, neural Bayes estimators in spatial applications have, to date, been restricted to data collected over a regular grid. These estimators are also currently dependent on a prescribed set of spatial locations, which means that the neural network needs to be re-trained for new data sets; this renders them impractical in many applications and impedes their widespread adoption. In this work, we employ graph neural networks to tackle the important problem of parameter estimation from data collected over arbitrary spatial locations. In addition to extending neural Bayes estimation to irregular spatial data, our architecture leads to substantial computational benefits, since the estimator can be used with any arrangement or number of locations and independent replicates, thus amortising the cost of training for a given spatial model. We also facilitate fast uncertainty quantification by training an accompanying neural Bayes estimator that approximates a set of marginal posterior quantiles. We illustrate our methodology on Gaussian and max-stable processes. Finally, we showcase our methodology in a global sea-surface temperature application, where we estimate the parameters of a Gaussian process model in 2,161 regions, each containing thousands of irregularly-spaced data points, in just a few minutes with a single graphics processing unit." @default.
- W4387389968 created "2023-10-06" @default.
- W4387389968 creator A5059740534 @default.
- W4387389968 creator A5063727990 @default.
- W4387389968 creator A5073963670 @default.
- W4387389968 creator A5079185681 @default.
- W4387389968 date "2023-10-04" @default.
- W4387389968 modified "2023-10-17" @default.
- W4387389968 title "Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks" @default.
- W4387389968 doi "https://doi.org/10.48550/arxiv.2310.02600" @default.
- W4387389968 hasPublicationYear "2023" @default.
- W4387389968 type Work @default.
- W4387389968 citedByCount "0" @default.
- W4387389968 crossrefType "posted-content" @default.
- W4387389968 hasAuthorship W4387389968A5059740534 @default.
- W4387389968 hasAuthorship W4387389968A5063727990 @default.
- W4387389968 hasAuthorship W4387389968A5073963670 @default.
- W4387389968 hasAuthorship W4387389968A5079185681 @default.
- W4387389968 hasBestOaLocation W43873899681 @default.
- W4387389968 hasConcept C105795698 @default.
- W4387389968 hasConcept C107673813 @default.
- W4387389968 hasConcept C11413529 @default.
- W4387389968 hasConcept C119857082 @default.
- W4387389968 hasConcept C121332964 @default.
- W4387389968 hasConcept C124101348 @default.
- W4387389968 hasConcept C149635348 @default.
- W4387389968 hasConcept C154945302 @default.
- W4387389968 hasConcept C163716315 @default.
- W4387389968 hasConcept C185429906 @default.
- W4387389968 hasConcept C207201462 @default.
- W4387389968 hasConcept C2780513914 @default.
- W4387389968 hasConcept C33923547 @default.
- W4387389968 hasConcept C41008148 @default.
- W4387389968 hasConcept C50644808 @default.
- W4387389968 hasConcept C61326573 @default.
- W4387389968 hasConcept C62520636 @default.
- W4387389968 hasConceptScore W4387389968C105795698 @default.
- W4387389968 hasConceptScore W4387389968C107673813 @default.
- W4387389968 hasConceptScore W4387389968C11413529 @default.
- W4387389968 hasConceptScore W4387389968C119857082 @default.
- W4387389968 hasConceptScore W4387389968C121332964 @default.
- W4387389968 hasConceptScore W4387389968C124101348 @default.
- W4387389968 hasConceptScore W4387389968C149635348 @default.
- W4387389968 hasConceptScore W4387389968C154945302 @default.
- W4387389968 hasConceptScore W4387389968C163716315 @default.
- W4387389968 hasConceptScore W4387389968C185429906 @default.
- W4387389968 hasConceptScore W4387389968C207201462 @default.
- W4387389968 hasConceptScore W4387389968C2780513914 @default.
- W4387389968 hasConceptScore W4387389968C33923547 @default.
- W4387389968 hasConceptScore W4387389968C41008148 @default.
- W4387389968 hasConceptScore W4387389968C50644808 @default.
- W4387389968 hasConceptScore W4387389968C61326573 @default.
- W4387389968 hasConceptScore W4387389968C62520636 @default.
- W4387389968 hasLocation W43873899681 @default.
- W4387389968 hasOpenAccess W4387389968 @default.
- W4387389968 hasPrimaryLocation W43873899681 @default.
- W4387389968 hasRelatedWork W1001352512 @default.
- W4387389968 hasRelatedWork W1657880117 @default.
- W4387389968 hasRelatedWork W1964286703 @default.
- W4387389968 hasRelatedWork W1987128138 @default.
- W4387389968 hasRelatedWork W1989889224 @default.
- W4387389968 hasRelatedWork W2169866437 @default.
- W4387389968 hasRelatedWork W2595172197 @default.
- W4387389968 hasRelatedWork W2885125400 @default.
- W4387389968 hasRelatedWork W4382618745 @default.
- W4387389968 hasRelatedWork W2084856301 @default.
- W4387389968 isParatext "false" @default.
- W4387389968 isRetracted "false" @default.
- W4387389968 workType "article" @default.