Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387392600> ?p ?o ?g. }
- W4387392600 endingPage "e34940" @default.
- W4387392600 startingPage "e34940" @default.
- W4387392600 abstract "Metabolism is involved in the pathogenesis of hypersensitivity pneumonitis. To identify diagnostic feature biomarkers based on metabolism-related genes (MRGs) and determine the correlation between MRGs and M2 macrophages in patients with hypersensitivity pneumonitis (HP). We retrieved the gene expression matrix from the Gene Expression Omnibus database. The differentially expressed MRGs (DE-MRGs) between healthy control (HC) and patients with HP were identified using the “DESeq2” R package. The “clusterProfiler” R package was used to perform “Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses” on DE-MRGs. We used machine learning algorithms for screening diagnostic feature biomarkers for HP. The “receiver operating characteristic curve” was used to evaluate diagnostic feature biomarkers’ discriminating ability. Next, we used the “Cell-type Identification by Estimating Relative Subsets of RNA Transcripts” algorithm to determine the infiltration status of 22 types of immune cells in the HC and HP groups. Single-cell sequencing and qRT-PCR were used to validate the diagnostic feature biomarkers. Furthermore, the status of macrophage polarization in the peripheral blood of patients with HP was determined using flow cytometry. Finally, the correlation between the proportion of M2 macrophages in peripheral blood and the diagnostic biomarker expression profile in HP patients was determined using Spearman analysis. We identified a total of 311 DE-MRGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that DE-MRGs were primarily enriched in processes like steroid hormone biosynthesis, drug metabolism, retinol metabolism, etc. Finally, we identified NPR3, GPX3 , and SULF1 as diagnostic feature biomarkers for HP using machine learning algorithms. The bioinformatic results were validated using the experimental results. The CIERSORT algorithm and flow cytometry showed a significant difference in the proportion of M2 macrophages in the HC and HP groups. The expression of SULF1 was positively correlated with the proportion of M2-type macrophages. In addition, a positive correlation was observed between SULF1 expression and M2 macrophage proportion. Finally, we identified NPR3, GPX3 , and SULF1 as diagnostic feature biomarkers for HP. Further, a correlation between SULF1 and M2 macrophages was observed, providing a novel perspective for treating patients with HP and future studies." @default.
- W4387392600 created "2023-10-07" @default.
- W4387392600 creator A5000969035 @default.
- W4387392600 creator A5003355054 @default.
- W4387392600 creator A5010174773 @default.
- W4387392600 creator A5056168495 @default.
- W4387392600 creator A5086469712 @default.
- W4387392600 date "2023-10-06" @default.
- W4387392600 modified "2023-10-07" @default.
- W4387392600 title "Machine learning-based metabolism-related genes signature, single-cell RNA sequencing, and experimental validation in hypersensitivity pneumonitis" @default.
- W4387392600 cites W1964333435 @default.
- W4387392600 cites W1968094283 @default.
- W4387392600 cites W2001584091 @default.
- W4387392600 cites W2014724432 @default.
- W4387392600 cites W2017105284 @default.
- W4387392600 cites W2022899908 @default.
- W4387392600 cites W2035326731 @default.
- W4387392600 cites W2044058228 @default.
- W4387392600 cites W2054208281 @default.
- W4387392600 cites W2074580060 @default.
- W4387392600 cites W2089431651 @default.
- W4387392600 cites W2091259355 @default.
- W4387392600 cites W2098047948 @default.
- W4387392600 cites W2102305559 @default.
- W4387392600 cites W2105637416 @default.
- W4387392600 cites W2124622873 @default.
- W4387392600 cites W2125079712 @default.
- W4387392600 cites W2146495932 @default.
- W4387392600 cites W2147410237 @default.
- W4387392600 cites W2149661971 @default.
- W4387392600 cites W2163175900 @default.
- W4387392600 cites W2163675951 @default.
- W4387392600 cites W2164405645 @default.
- W4387392600 cites W2187866184 @default.
- W4387392600 cites W2304527713 @default.
- W4387392600 cites W2316233160 @default.
- W4387392600 cites W2498724094 @default.
- W4387392600 cites W2606606770 @default.
- W4387392600 cites W2610443858 @default.
- W4387392600 cites W2745266801 @default.
- W4387392600 cites W2774401265 @default.
- W4387392600 cites W2775612423 @default.
- W4387392600 cites W2802834415 @default.
- W4387392600 cites W2809288936 @default.
- W4387392600 cites W2903168567 @default.
- W4387392600 cites W2924163258 @default.
- W4387392600 cites W2953489677 @default.
- W4387392600 cites W2971754877 @default.
- W4387392600 cites W2981230034 @default.
- W4387392600 cites W3010807281 @default.
- W4387392600 cites W3024727467 @default.
- W4387392600 cites W3025035929 @default.
- W4387392600 cites W3025935955 @default.
- W4387392600 cites W3036064217 @default.
- W4387392600 cites W3040434698 @default.
- W4387392600 cites W3040876684 @default.
- W4387392600 cites W3048917756 @default.
- W4387392600 cites W3092143716 @default.
- W4387392600 cites W3109815715 @default.
- W4387392600 cites W3151337491 @default.
- W4387392600 cites W3161673430 @default.
- W4387392600 cites W3173604265 @default.
- W4387392600 cites W4200301114 @default.
- W4387392600 cites W4223488597 @default.
- W4387392600 doi "https://doi.org/10.1097/md.0000000000034940" @default.
- W4387392600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37800807" @default.
- W4387392600 hasPublicationYear "2023" @default.
- W4387392600 type Work @default.
- W4387392600 citedByCount "0" @default.
- W4387392600 crossrefType "journal-article" @default.
- W4387392600 hasAuthorship W4387392600A5000969035 @default.
- W4387392600 hasAuthorship W4387392600A5003355054 @default.
- W4387392600 hasAuthorship W4387392600A5010174773 @default.
- W4387392600 hasAuthorship W4387392600A5056168495 @default.
- W4387392600 hasAuthorship W4387392600A5086469712 @default.
- W4387392600 hasBestOaLocation W43873926001 @default.
- W4387392600 hasConcept C104317684 @default.
- W4387392600 hasConcept C150194340 @default.
- W4387392600 hasConcept C152724338 @default.
- W4387392600 hasConcept C162317418 @default.
- W4387392600 hasConcept C54355233 @default.
- W4387392600 hasConcept C70721500 @default.
- W4387392600 hasConcept C71924100 @default.
- W4387392600 hasConcept C86803240 @default.
- W4387392600 hasConceptScore W4387392600C104317684 @default.
- W4387392600 hasConceptScore W4387392600C150194340 @default.
- W4387392600 hasConceptScore W4387392600C152724338 @default.
- W4387392600 hasConceptScore W4387392600C162317418 @default.
- W4387392600 hasConceptScore W4387392600C54355233 @default.
- W4387392600 hasConceptScore W4387392600C70721500 @default.
- W4387392600 hasConceptScore W4387392600C71924100 @default.
- W4387392600 hasConceptScore W4387392600C86803240 @default.
- W4387392600 hasIssue "40" @default.
- W4387392600 hasLocation W43873926001 @default.
- W4387392600 hasLocation W43873926002 @default.
- W4387392600 hasOpenAccess W4387392600 @default.
- W4387392600 hasPrimaryLocation W43873926001 @default.
- W4387392600 hasRelatedWork W1976510917 @default.