Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387392694> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387392694 abstract "Abstract Percent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated ( r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma." @default.
- W4387392694 created "2023-10-07" @default.
- W4387392694 creator A5000705797 @default.
- W4387392694 creator A5059457931 @default.
- W4387392694 creator A5064932750 @default.
- W4387392694 creator A5071927625 @default.
- W4387392694 creator A5086776097 @default.
- W4387392694 creator A5089822117 @default.
- W4387392694 date "2023-10-05" @default.
- W4387392694 modified "2023-10-15" @default.
- W4387392694 title "The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study" @default.
- W4387392694 cites W1988325237 @default.
- W4387392694 cites W2015159529 @default.
- W4387392694 cites W2040881903 @default.
- W4387392694 cites W2065289547 @default.
- W4387392694 cites W2171306379 @default.
- W4387392694 cites W2795389019 @default.
- W4387392694 cites W2935748854 @default.
- W4387392694 cites W2946404782 @default.
- W4387392694 cites W2956228567 @default.
- W4387392694 cites W3096334034 @default.
- W4387392694 cites W3104135675 @default.
- W4387392694 cites W3200930555 @default.
- W4387392694 cites W4200620450 @default.
- W4387392694 cites W4295758653 @default.
- W4387392694 doi "https://doi.org/10.1002/jor.25693" @default.
- W4387392694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37799037" @default.
- W4387392694 hasPublicationYear "2023" @default.
- W4387392694 type Work @default.
- W4387392694 citedByCount "0" @default.
- W4387392694 crossrefType "journal-article" @default.
- W4387392694 hasAuthorship W4387392694A5000705797 @default.
- W4387392694 hasAuthorship W4387392694A5059457931 @default.
- W4387392694 hasAuthorship W4387392694A5064932750 @default.
- W4387392694 hasAuthorship W4387392694A5071927625 @default.
- W4387392694 hasAuthorship W4387392694A5086776097 @default.
- W4387392694 hasAuthorship W4387392694A5089822117 @default.
- W4387392694 hasConcept C119857082 @default.
- W4387392694 hasConcept C142724271 @default.
- W4387392694 hasConcept C154945302 @default.
- W4387392694 hasConcept C2777760704 @default.
- W4387392694 hasConcept C41008148 @default.
- W4387392694 hasConcept C71924100 @default.
- W4387392694 hasConceptScore W4387392694C119857082 @default.
- W4387392694 hasConceptScore W4387392694C142724271 @default.
- W4387392694 hasConceptScore W4387392694C154945302 @default.
- W4387392694 hasConceptScore W4387392694C2777760704 @default.
- W4387392694 hasConceptScore W4387392694C41008148 @default.
- W4387392694 hasConceptScore W4387392694C71924100 @default.
- W4387392694 hasLocation W43873926941 @default.
- W4387392694 hasLocation W43873926942 @default.
- W4387392694 hasOpenAccess W4387392694 @default.
- W4387392694 hasPrimaryLocation W43873926941 @default.
- W4387392694 hasRelatedWork W2961085424 @default.
- W4387392694 hasRelatedWork W3046775127 @default.
- W4387392694 hasRelatedWork W3107602296 @default.
- W4387392694 hasRelatedWork W3170094116 @default.
- W4387392694 hasRelatedWork W3209574120 @default.
- W4387392694 hasRelatedWork W4210805261 @default.
- W4387392694 hasRelatedWork W4306674287 @default.
- W4387392694 hasRelatedWork W4312192474 @default.
- W4387392694 hasRelatedWork W4386462264 @default.
- W4387392694 hasRelatedWork W4387297750 @default.
- W4387392694 isParatext "false" @default.
- W4387392694 isRetracted "false" @default.
- W4387392694 workType "article" @default.