Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387393402> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387393402 abstract "Personalized MedicineAhead of Print CommentaryPersonalized medicine, the inevitable future of cancer immunotherapyMohsen BasiriMohsen Basiri *Author for correspondence: E-mail Address: mbasiri@coh.orghttps://orcid.org/0000-0003-2512-7641T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USADepartment of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, 193954644, IranSearch for more papers by this authorPublished Online:6 Oct 2023https://doi.org/10.2217/pme-2023-0083AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: cancer immunotherapycancer vaccinechimeric antigen receptorimmune checkpoint blockadepatient-derived tumor organoidpersonalized medicineReferences1. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15(2), 81–94 (2018).Crossref, Medline, CAS, Google Scholar2. Wang JH. Why the outcome of anti-tumor immune responses is heterogeneous: a novel idea in the context of immunological heterogeneity in cancers. BioEssays 42(10), e2000024 (2020).Crossref, Medline, Google Scholar3. Shiravand Y, Khodadadi F, Kashani SMA et al. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 29(5), 3044–3060 (2022).Crossref, Medline, Google Scholar4. Serra-Bellver P, Versluis JM, Oberoi HK et al. Real-world outcomes with ipilimumab and nivolumab in advanced melanoma: a multicentre retrospective study. Eur. J. Cancer 176, 121–132 (2022).Crossref, Medline, CAS, Google Scholar5. Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-beta signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 12, 9527–9538 (2019).Crossref, Medline, CAS, Google Scholar6. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12, 636568 (2021).Crossref, Medline, CAS, Google Scholar7. Quan Z, Yang Y, Zheng H et al. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J. Cancer 13(13), 3434–3443 (2022).Crossref, Medline, CAS, Google Scholar8. Wang X, Wang H, Liu D et al. Deep learning using bulk RNA-seq data expands cell landscape identification in tumor microenvironment. Oncoimmunology 11(1), 2043662 (2022).Crossref, Medline, Google Scholar9. Bai Z, Woodhouse S, Zhao Z et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8(23), eabj2820 (2022).Crossref, Medline, CAS, Google Scholar10. Chen GM, Chen C, Das RK et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11(9), 2186–2199 (2021).Crossref, Medline, CAS, Google Scholar11. Xiao H, Woods EC, Vukojicic P, Bertozzi CR. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc. Natl Acad. Sci. U S A 113(37), 10304–10309 (2016).Crossref, Medline, CAS, Google Scholar12. Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22(1), 26–36 (2016).Crossref, Medline, CAS, Google Scholar13. Hamieh M, Mansilla-Soto J, Riviere I, Sadelain M. Programming CAR T cell tumor recognition: tuned antigen sensing and logic gating. Cancer Discov. 13(4), 829–843 (2023).Crossref, Medline, CAS, Google Scholar14. Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front. Immunol. 12, 744823 (2021).Crossref, Medline, CAS, Google Scholar15. Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front. Immunol. 12, 696791 (2021).Crossref, Medline, CAS, Google Scholar16. Wang C, Yu M, Zhang W. Neoantigen discovery and applications in glioblastoma: an immunotherapy perspective. Cancer Lett. 550, 215945 (2022).Crossref, Medline, CAS, Google Scholar17. Jang JH, Huang Y, Zheng P et al. Imaging of cell–cell communication in a vertical orientation reveals high-resolution structure of immunological synapse and novel PD-1 dynamics. J. Immunol. 195(3), 1320–1330 (2015).Crossref, Medline, CAS, Google Scholar18. Liu D, Badeti S, Dotti G et al. The role of immunological synapse in predicting the efficacy of chimeric antigen receptor (CAR) immunotherapy. Cell. Commun. Signal. 18(1), 134 (2020).Crossref, Medline, CAS, Google Scholar19. Wu W, Li X, Yu S. Patient-derived tumour organoids: a bridge between cancer biology and personalised therapy. Acta Biomater. 146, 23–36 (2022).Crossref, Medline, Google Scholar20. Parikh AY, Masi R, Gasmi B et al. Using patient-derived tumor organoids from common epithelial cancers to analyze personalized T-cell responses to neoantigens. Cancer Immunol. Immunother. (2023). https://doi.org/10.1007/s00262-023-03476-6Crossref, Medline, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Received 2 July 2023 Accepted 27 July 2023 Published online 6 October 2023 Information© 2023 Future Medicine LtdKeywordscancer immunotherapycancer vaccinechimeric antigen receptorimmune checkpoint blockadepatient-derived tumor organoidpersonalized medicineFinancial & competing interests disclosureThe author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W4387393402 created "2023-10-07" @default.
- W4387393402 creator A5038381565 @default.
- W4387393402 date "2023-10-06" @default.
- W4387393402 modified "2023-10-07" @default.
- W4387393402 title "Personalized medicine, the inevitable future of cancer immunotherapy" @default.
- W4387393402 cites W1495183947 @default.
- W4387393402 cites W2232549736 @default.
- W4387393402 cites W2508974650 @default.
- W4387393402 cites W2767281692 @default.
- W4387393402 cites W2988686122 @default.
- W4387393402 cites W3047762819 @default.
- W4387393402 cites W3080131033 @default.
- W4387393402 cites W3134746059 @default.
- W4387393402 cites W3151543485 @default.
- W4387393402 cites W3176647828 @default.
- W4387393402 cites W3201749743 @default.
- W4387393402 cites W4226248509 @default.
- W4387393402 cites W4226329559 @default.
- W4387393402 cites W4229008810 @default.
- W4387393402 cites W4281666488 @default.
- W4387393402 cites W4303437774 @default.
- W4387393402 cites W4303449017 @default.
- W4387393402 cites W4307967740 @default.
- W4387393402 cites W4360810408 @default.
- W4387393402 cites W4382181579 @default.
- W4387393402 doi "https://doi.org/10.2217/pme-2023-0083" @default.
- W4387393402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37800352" @default.
- W4387393402 hasPublicationYear "2023" @default.
- W4387393402 type Work @default.
- W4387393402 citedByCount "0" @default.
- W4387393402 crossrefType "journal-article" @default.
- W4387393402 hasAuthorship W4387393402A5038381565 @default.
- W4387393402 hasConcept C121608353 @default.
- W4387393402 hasConcept C126322002 @default.
- W4387393402 hasConcept C143998085 @default.
- W4387393402 hasConcept C151730666 @default.
- W4387393402 hasConcept C2777701055 @default.
- W4387393402 hasConcept C2779343474 @default.
- W4387393402 hasConcept C2779473830 @default.
- W4387393402 hasConcept C2780030458 @default.
- W4387393402 hasConcept C2780674031 @default.
- W4387393402 hasConcept C2780851360 @default.
- W4387393402 hasConcept C2781433595 @default.
- W4387393402 hasConcept C55493867 @default.
- W4387393402 hasConcept C71924100 @default.
- W4387393402 hasConcept C86803240 @default.
- W4387393402 hasConceptScore W4387393402C121608353 @default.
- W4387393402 hasConceptScore W4387393402C126322002 @default.
- W4387393402 hasConceptScore W4387393402C143998085 @default.
- W4387393402 hasConceptScore W4387393402C151730666 @default.
- W4387393402 hasConceptScore W4387393402C2777701055 @default.
- W4387393402 hasConceptScore W4387393402C2779343474 @default.
- W4387393402 hasConceptScore W4387393402C2779473830 @default.
- W4387393402 hasConceptScore W4387393402C2780030458 @default.
- W4387393402 hasConceptScore W4387393402C2780674031 @default.
- W4387393402 hasConceptScore W4387393402C2780851360 @default.
- W4387393402 hasConceptScore W4387393402C2781433595 @default.
- W4387393402 hasConceptScore W4387393402C55493867 @default.
- W4387393402 hasConceptScore W4387393402C71924100 @default.
- W4387393402 hasConceptScore W4387393402C86803240 @default.
- W4387393402 hasLocation W43873934021 @default.
- W4387393402 hasLocation W43873934022 @default.
- W4387393402 hasOpenAccess W4387393402 @default.
- W4387393402 hasPrimaryLocation W43873934021 @default.
- W4387393402 hasRelatedWork W2800160190 @default.
- W4387393402 hasRelatedWork W2899127460 @default.
- W4387393402 hasRelatedWork W2973740076 @default.
- W4387393402 hasRelatedWork W2976744492 @default.
- W4387393402 hasRelatedWork W3027051390 @default.
- W4387393402 hasRelatedWork W3043703771 @default.
- W4387393402 hasRelatedWork W4236421112 @default.
- W4387393402 hasRelatedWork W4241093956 @default.
- W4387393402 hasRelatedWork W4313890856 @default.
- W4387393402 hasRelatedWork W3108601240 @default.
- W4387393402 isParatext "false" @default.
- W4387393402 isRetracted "false" @default.
- W4387393402 workType "article" @default.