Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387393480> ?p ?o ?g. }
- W4387393480 endingPage "107572" @default.
- W4387393480 startingPage "107572" @default.
- W4387393480 abstract "Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km2). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/103 km2), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/103 km2). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM." @default.
- W4387393480 created "2023-10-07" @default.
- W4387393480 creator A5000922713 @default.
- W4387393480 creator A5010565307 @default.
- W4387393480 creator A5016124068 @default.
- W4387393480 creator A5029773701 @default.
- W4387393480 creator A5054015235 @default.
- W4387393480 creator A5057698235 @default.
- W4387393480 creator A5060595682 @default.
- W4387393480 creator A5088909480 @default.
- W4387393480 date "2024-01-01" @default.
- W4387393480 modified "2023-10-07" @default.
- W4387393480 title "Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas" @default.
- W4387393480 cites W1964357740 @default.
- W4387393480 cites W1985642751 @default.
- W4387393480 cites W1987651493 @default.
- W4387393480 cites W2054325787 @default.
- W4387393480 cites W2055336003 @default.
- W4387393480 cites W2112776483 @default.
- W4387393480 cites W2128089648 @default.
- W4387393480 cites W2157963336 @default.
- W4387393480 cites W2163283323 @default.
- W4387393480 cites W2245710736 @default.
- W4387393480 cites W2500051608 @default.
- W4387393480 cites W2606716674 @default.
- W4387393480 cites W2744536770 @default.
- W4387393480 cites W2745770579 @default.
- W4387393480 cites W2773348893 @default.
- W4387393480 cites W2803360234 @default.
- W4387393480 cites W2807242099 @default.
- W4387393480 cites W2889805085 @default.
- W4387393480 cites W2892307361 @default.
- W4387393480 cites W2899637392 @default.
- W4387393480 cites W2911920745 @default.
- W4387393480 cites W2911964244 @default.
- W4387393480 cites W2914965248 @default.
- W4387393480 cites W2921357315 @default.
- W4387393480 cites W2953121833 @default.
- W4387393480 cites W2958221227 @default.
- W4387393480 cites W2997081924 @default.
- W4387393480 cites W3004557263 @default.
- W4387393480 cites W3004613419 @default.
- W4387393480 cites W3004969124 @default.
- W4387393480 cites W3012522878 @default.
- W4387393480 cites W3040748236 @default.
- W4387393480 cites W3086056576 @default.
- W4387393480 cites W3092230576 @default.
- W4387393480 cites W3128171785 @default.
- W4387393480 cites W3142109388 @default.
- W4387393480 cites W3166420679 @default.
- W4387393480 cites W3167618177 @default.
- W4387393480 cites W3173445288 @default.
- W4387393480 cites W3174898617 @default.
- W4387393480 cites W3175149180 @default.
- W4387393480 cites W3177309216 @default.
- W4387393480 cites W3181957593 @default.
- W4387393480 cites W3196615433 @default.
- W4387393480 cites W3197387938 @default.
- W4387393480 cites W3211132102 @default.
- W4387393480 cites W3213215216 @default.
- W4387393480 cites W3215367274 @default.
- W4387393480 cites W4200387658 @default.
- W4387393480 cites W4200498353 @default.
- W4387393480 cites W4211208956 @default.
- W4387393480 cites W4213279137 @default.
- W4387393480 cites W4214618928 @default.
- W4387393480 cites W4220960686 @default.
- W4387393480 cites W4224996595 @default.
- W4387393480 cites W4287877483 @default.
- W4387393480 cites W4289278147 @default.
- W4387393480 cites W4295128254 @default.
- W4387393480 cites W4296220078 @default.
- W4387393480 cites W4307656864 @default.
- W4387393480 cites W4309472792 @default.
- W4387393480 cites W4321602385 @default.
- W4387393480 doi "https://doi.org/10.1016/j.catena.2023.107572" @default.
- W4387393480 hasPublicationYear "2024" @default.
- W4387393480 type Work @default.
- W4387393480 citedByCount "0" @default.
- W4387393480 crossrefType "journal-article" @default.
- W4387393480 hasAuthorship W4387393480A5000922713 @default.
- W4387393480 hasAuthorship W4387393480A5010565307 @default.
- W4387393480 hasAuthorship W4387393480A5016124068 @default.
- W4387393480 hasAuthorship W4387393480A5029773701 @default.
- W4387393480 hasAuthorship W4387393480A5054015235 @default.
- W4387393480 hasAuthorship W4387393480A5057698235 @default.
- W4387393480 hasAuthorship W4387393480A5060595682 @default.
- W4387393480 hasAuthorship W4387393480A5088909480 @default.
- W4387393480 hasBestOaLocation W43873934801 @default.
- W4387393480 hasConcept C104471815 @default.
- W4387393480 hasConcept C105795698 @default.
- W4387393480 hasConcept C11413529 @default.
- W4387393480 hasConcept C125572338 @default.
- W4387393480 hasConcept C127313418 @default.
- W4387393480 hasConcept C140779682 @default.
- W4387393480 hasConcept C159390177 @default.
- W4387393480 hasConcept C159750122 @default.
- W4387393480 hasConcept C187320778 @default.