Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387394022> ?p ?o ?g. }
- W4387394022 endingPage "110057" @default.
- W4387394022 startingPage "110057" @default.
- W4387394022 abstract "In this paper, a novel image-based Deep Learning (DL) approach for channel estimation for future wireless communications is proposed. The time-frequency response of the fast-fading wireless channel is represented as a 2D image to estimate the unknown values of the channel response using known values at the pilot locations. With given images, both image Super-Resolution (SR) and image Denoising Network (DnN), termed as Super-Resolution and Denoising Network (SRDnN), are combined to estimate the wireless channel. To show the effectiveness, the proposed SRDnN is applied to Massive Multiple-Input Multiple-Output (mMIMO) with Non-Orthogonal Multiple Access (NOMA). The enhanced performances of SRDnN are quantified in terms of Mean Square Error (MSE) and Symbol Error Rate (SER). In addition, the influence of pilot numbers on SRDnN performance for next-generation mMIMO-NOMA networks is presented. The simulation results demonstrate that SRDnN is comparable to the level of Maximum Likelihood (ML) detection for both with and without complete Channel State Information (CSI) at the receiver with less number of pilots." @default.
- W4387394022 created "2023-10-07" @default.
- W4387394022 creator A5057727689 @default.
- W4387394022 creator A5080250840 @default.
- W4387394022 creator A5083144356 @default.
- W4387394022 date "2023-10-01" @default.
- W4387394022 modified "2023-10-09" @default.
- W4387394022 title "Image super resolution based channel estimation for future wireless communication" @default.
- W4387394022 cites W1516185633 @default.
- W4387394022 cites W1885185971 @default.
- W4387394022 cites W1990117292 @default.
- W4387394022 cites W2040209771 @default.
- W4387394022 cites W2110810699 @default.
- W4387394022 cites W2160547390 @default.
- W4387394022 cites W2167943378 @default.
- W4387394022 cites W2194775991 @default.
- W4387394022 cites W2508457857 @default.
- W4387394022 cites W2546654018 @default.
- W4387394022 cites W2734408173 @default.
- W4387394022 cites W2781305638 @default.
- W4387394022 cites W2802495557 @default.
- W4387394022 cites W2887695188 @default.
- W4387394022 cites W2890265660 @default.
- W4387394022 cites W2902519853 @default.
- W4387394022 cites W2909412266 @default.
- W4387394022 cites W2963190722 @default.
- W4387394022 cites W2963470893 @default.
- W4387394022 cites W2963836746 @default.
- W4387394022 cites W2966295362 @default.
- W4387394022 cites W2998311242 @default.
- W4387394022 cites W2999459967 @default.
- W4387394022 cites W3007280204 @default.
- W4387394022 cites W3009979476 @default.
- W4387394022 cites W3022169895 @default.
- W4387394022 cites W3042642124 @default.
- W4387394022 cites W3045134922 @default.
- W4387394022 cites W3103486734 @default.
- W4387394022 cites W3104725225 @default.
- W4387394022 cites W3154014948 @default.
- W4387394022 cites W3158832185 @default.
- W4387394022 cites W3162637257 @default.
- W4387394022 cites W3169684453 @default.
- W4387394022 cites W3206820360 @default.
- W4387394022 cites W4211185216 @default.
- W4387394022 cites W4223974641 @default.
- W4387394022 doi "https://doi.org/10.1016/j.comnet.2023.110057" @default.
- W4387394022 hasPublicationYear "2023" @default.
- W4387394022 type Work @default.
- W4387394022 citedByCount "0" @default.
- W4387394022 crossrefType "journal-article" @default.
- W4387394022 hasAuthorship W4387394022A5057727689 @default.
- W4387394022 hasAuthorship W4387394022A5080250840 @default.
- W4387394022 hasAuthorship W4387394022A5083144356 @default.
- W4387394022 hasConcept C105795698 @default.
- W4387394022 hasConcept C108037233 @default.
- W4387394022 hasConcept C11413529 @default.
- W4387394022 hasConcept C127162648 @default.
- W4387394022 hasConcept C138660444 @default.
- W4387394022 hasConcept C139945424 @default.
- W4387394022 hasConcept C148063708 @default.
- W4387394022 hasConcept C154945302 @default.
- W4387394022 hasConcept C2775918612 @default.
- W4387394022 hasConcept C33923547 @default.
- W4387394022 hasConcept C41008148 @default.
- W4387394022 hasConcept C555944384 @default.
- W4387394022 hasConcept C56296756 @default.
- W4387394022 hasConcept C76155785 @default.
- W4387394022 hasConcept C79403827 @default.
- W4387394022 hasConcept C81978471 @default.
- W4387394022 hasConceptScore W4387394022C105795698 @default.
- W4387394022 hasConceptScore W4387394022C108037233 @default.
- W4387394022 hasConceptScore W4387394022C11413529 @default.
- W4387394022 hasConceptScore W4387394022C127162648 @default.
- W4387394022 hasConceptScore W4387394022C138660444 @default.
- W4387394022 hasConceptScore W4387394022C139945424 @default.
- W4387394022 hasConceptScore W4387394022C148063708 @default.
- W4387394022 hasConceptScore W4387394022C154945302 @default.
- W4387394022 hasConceptScore W4387394022C2775918612 @default.
- W4387394022 hasConceptScore W4387394022C33923547 @default.
- W4387394022 hasConceptScore W4387394022C41008148 @default.
- W4387394022 hasConceptScore W4387394022C555944384 @default.
- W4387394022 hasConceptScore W4387394022C56296756 @default.
- W4387394022 hasConceptScore W4387394022C76155785 @default.
- W4387394022 hasConceptScore W4387394022C79403827 @default.
- W4387394022 hasConceptScore W4387394022C81978471 @default.
- W4387394022 hasFunder F4320322030 @default.
- W4387394022 hasFunder F4320322120 @default.
- W4387394022 hasFunder F4320335489 @default.
- W4387394022 hasLocation W43873940221 @default.
- W4387394022 hasOpenAccess W4387394022 @default.
- W4387394022 hasPrimaryLocation W43873940221 @default.
- W4387394022 hasRelatedWork W1757854673 @default.
- W4387394022 hasRelatedWork W1931943713 @default.
- W4387394022 hasRelatedWork W2103028776 @default.
- W4387394022 hasRelatedWork W2507345605 @default.
- W4387394022 hasRelatedWork W2991224564 @default.
- W4387394022 hasRelatedWork W3012261742 @default.
- W4387394022 hasRelatedWork W301676527 @default.