Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387394859> ?p ?o ?g. }
- W4387394859 endingPage "109695" @default.
- W4387394859 startingPage "109695" @default.
- W4387394859 abstract "In recent years, deep transfer learning techniques have been successfully applied to solve RUL prediction across different working conditions. However, for RUL prediction across different machines in which the data distribution and fault evolution characteristics vary largely, the extraction and transition of prognostic knowledge become more challenging. Even if fault mode information can assist in the knowledge transfer, model bias will inevitably exist on the target machine with mixed or unknown faults. To address this issue from a transferability perspective, this paper proposes a novel selective transfer learning approach for RUL prediction across machines. First, the paper utilizes the tensor representation to construct the meta-degradation trend of each fault mode and evaluates the transferability of source domain data from fault mode and degradation characteristics through a new cross-machine transfer degree indicator (M-TDI). Second, a Long Short-Term Memory (LSTM)-based selective transfer strategy is proposed using the M-TDIs. The paper designs a training algorithm with an alternating optimization scheme to seek the optimal tensor decomposition and knowledge transfer effect. Theoretical analysis proves that the proposed approach significantly reduces the upper bound of prediction error. Furthermore, experimental results on three benchmark datasets prove the effectiveness of the proposed approach." @default.
- W4387394859 created "2023-10-07" @default.
- W4387394859 creator A5033586311 @default.
- W4387394859 creator A5066380010 @default.
- W4387394859 creator A5073918982 @default.
- W4387394859 creator A5079329106 @default.
- W4387394859 creator A5079634540 @default.
- W4387394859 date "2024-02-01" @default.
- W4387394859 modified "2023-10-15" @default.
- W4387394859 title "Tensor representation-based transferability analytics and selective transfer learning of prognostic knowledge for remaining useful life prediction across machines" @default.
- W4387394859 cites W2025603201 @default.
- W4387394859 cites W2104068492 @default.
- W4387394859 cites W2115403315 @default.
- W4387394859 cites W2140208140 @default.
- W4387394859 cites W2149350210 @default.
- W4387394859 cites W2149466042 @default.
- W4387394859 cites W2155433308 @default.
- W4387394859 cites W2524946712 @default.
- W4387394859 cites W2612904117 @default.
- W4387394859 cites W2692693673 @default.
- W4387394859 cites W2808622270 @default.
- W4387394859 cites W2900529838 @default.
- W4387394859 cites W2902443160 @default.
- W4387394859 cites W2904460913 @default.
- W4387394859 cites W2943909972 @default.
- W4387394859 cites W2945413072 @default.
- W4387394859 cites W2997857369 @default.
- W4387394859 cites W2999342951 @default.
- W4387394859 cites W3045857695 @default.
- W4387394859 cites W3048813124 @default.
- W4387394859 cites W3138116568 @default.
- W4387394859 cites W3160845249 @default.
- W4387394859 cites W3183445774 @default.
- W4387394859 cites W3201953627 @default.
- W4387394859 cites W3207642814 @default.
- W4387394859 cites W3213646008 @default.
- W4387394859 cites W4224215213 @default.
- W4387394859 cites W4224275571 @default.
- W4387394859 cites W4224296154 @default.
- W4387394859 cites W4280565055 @default.
- W4387394859 cites W4289515705 @default.
- W4387394859 cites W4292539927 @default.
- W4387394859 cites W4327923876 @default.
- W4387394859 cites W4387415049 @default.
- W4387394859 doi "https://doi.org/10.1016/j.ress.2023.109695" @default.
- W4387394859 hasPublicationYear "2024" @default.
- W4387394859 type Work @default.
- W4387394859 citedByCount "0" @default.
- W4387394859 crossrefType "journal-article" @default.
- W4387394859 hasAuthorship W4387394859A5033586311 @default.
- W4387394859 hasAuthorship W4387394859A5066380010 @default.
- W4387394859 hasAuthorship W4387394859A5073918982 @default.
- W4387394859 hasAuthorship W4387394859A5079329106 @default.
- W4387394859 hasAuthorship W4387394859A5079634540 @default.
- W4387394859 hasConcept C119857082 @default.
- W4387394859 hasConcept C124101348 @default.
- W4387394859 hasConcept C12713177 @default.
- W4387394859 hasConcept C127313418 @default.
- W4387394859 hasConcept C13280743 @default.
- W4387394859 hasConcept C140331021 @default.
- W4387394859 hasConcept C150899416 @default.
- W4387394859 hasConcept C154945302 @default.
- W4387394859 hasConcept C155281189 @default.
- W4387394859 hasConcept C165205528 @default.
- W4387394859 hasConcept C175551986 @default.
- W4387394859 hasConcept C17744445 @default.
- W4387394859 hasConcept C185798385 @default.
- W4387394859 hasConcept C199360897 @default.
- W4387394859 hasConcept C199539241 @default.
- W4387394859 hasConcept C202444582 @default.
- W4387394859 hasConcept C205649164 @default.
- W4387394859 hasConcept C2776359362 @default.
- W4387394859 hasConcept C2780801425 @default.
- W4387394859 hasConcept C33923547 @default.
- W4387394859 hasConcept C41008148 @default.
- W4387394859 hasConcept C61272859 @default.
- W4387394859 hasConcept C75684735 @default.
- W4387394859 hasConcept C94625758 @default.
- W4387394859 hasConceptScore W4387394859C119857082 @default.
- W4387394859 hasConceptScore W4387394859C124101348 @default.
- W4387394859 hasConceptScore W4387394859C12713177 @default.
- W4387394859 hasConceptScore W4387394859C127313418 @default.
- W4387394859 hasConceptScore W4387394859C13280743 @default.
- W4387394859 hasConceptScore W4387394859C140331021 @default.
- W4387394859 hasConceptScore W4387394859C150899416 @default.
- W4387394859 hasConceptScore W4387394859C154945302 @default.
- W4387394859 hasConceptScore W4387394859C155281189 @default.
- W4387394859 hasConceptScore W4387394859C165205528 @default.
- W4387394859 hasConceptScore W4387394859C175551986 @default.
- W4387394859 hasConceptScore W4387394859C17744445 @default.
- W4387394859 hasConceptScore W4387394859C185798385 @default.
- W4387394859 hasConceptScore W4387394859C199360897 @default.
- W4387394859 hasConceptScore W4387394859C199539241 @default.
- W4387394859 hasConceptScore W4387394859C202444582 @default.
- W4387394859 hasConceptScore W4387394859C205649164 @default.
- W4387394859 hasConceptScore W4387394859C2776359362 @default.
- W4387394859 hasConceptScore W4387394859C2780801425 @default.
- W4387394859 hasConceptScore W4387394859C33923547 @default.