Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387395058> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387395058 abstract "Automatic construction of pulmonary vascular trees (PVTs) from computer tomography (CT) images is a critical step for computer-assisted diagnosis and treatment planning of pulmonary diseases. However, robust and accurate construction of the PVTs is a challenging problem due to the difficulties in artery/vein (A/V) classification and touching vessels separation. Current studies use deep learning approaches for A/V classification but lack of the utilization of vessel tree topology knowledge. In this paper, we combine deep learning approach with graph topology optimization for more accurate PVT construction. We first use a 3-D U-Net model to achieve the initial A/V segmentation and obtain the voxel-level probability maps. Based on the initial segmentation, the initial A/V tree-graph is constructed, and the centerlines and radius of each vessel segment are calculated. Using the initial voxel probabilities and the geometric features of the vessel segments (e.g., center line direction, length and radius), a graph optimization step is performed to correct the inaccurate A/V classifications and break the erroneous connections between the touching vessels. Finally, a more accurate hierarchical tree graph is constructed. Experimental results illustrate that the combination of deep learning and graph optimization outperformed the state-of-the-arts (SOTA) methods which only uses deep learning. Our method also simultaneously generates a parametric model of the vascular tree, which is important for vessel morphometry measure, blood flow simulation and etc." @default.
- W4387395058 created "2023-10-07" @default.
- W4387395058 creator A5002847634 @default.
- W4387395058 creator A5033173876 @default.
- W4387395058 date "2023-03-01" @default.
- W4387395058 modified "2023-10-07" @default.
- W4387395058 title "Hiearachical Construction of Pulmonary Vascular Trees from CT Images Based on Combined Deep Learning and Graph Topology Optimization" @default.
- W4387395058 cites W1637661457 @default.
- W4387395058 cites W1998415587 @default.
- W4387395058 cites W2048733914 @default.
- W4387395058 cites W2148852318 @default.
- W4387395058 cites W2168732003 @default.
- W4387395058 cites W2183399505 @default.
- W4387395058 cites W2213701027 @default.
- W4387395058 cites W2464708700 @default.
- W4387395058 cites W2800884849 @default.
- W4387395058 cites W2902537990 @default.
- W4387395058 cites W2962914239 @default.
- W4387395058 cites W3098652539 @default.
- W4387395058 cites W3112701542 @default.
- W4387395058 cites W3132106430 @default.
- W4387395058 cites W3196236169 @default.
- W4387395058 cites W3197954266 @default.
- W4387395058 doi "https://doi.org/10.1109/imip57114.2023.00017" @default.
- W4387395058 hasPublicationYear "2023" @default.
- W4387395058 type Work @default.
- W4387395058 citedByCount "0" @default.
- W4387395058 crossrefType "proceedings-article" @default.
- W4387395058 hasAuthorship W4387395058A5002847634 @default.
- W4387395058 hasAuthorship W4387395058A5033173876 @default.
- W4387395058 hasConcept C108583219 @default.
- W4387395058 hasConcept C11413529 @default.
- W4387395058 hasConcept C124504099 @default.
- W4387395058 hasConcept C132525143 @default.
- W4387395058 hasConcept C153180895 @default.
- W4387395058 hasConcept C154945302 @default.
- W4387395058 hasConcept C41008148 @default.
- W4387395058 hasConcept C54170458 @default.
- W4387395058 hasConcept C80444323 @default.
- W4387395058 hasConcept C89600930 @default.
- W4387395058 hasConceptScore W4387395058C108583219 @default.
- W4387395058 hasConceptScore W4387395058C11413529 @default.
- W4387395058 hasConceptScore W4387395058C124504099 @default.
- W4387395058 hasConceptScore W4387395058C132525143 @default.
- W4387395058 hasConceptScore W4387395058C153180895 @default.
- W4387395058 hasConceptScore W4387395058C154945302 @default.
- W4387395058 hasConceptScore W4387395058C41008148 @default.
- W4387395058 hasConceptScore W4387395058C54170458 @default.
- W4387395058 hasConceptScore W4387395058C80444323 @default.
- W4387395058 hasConceptScore W4387395058C89600930 @default.
- W4387395058 hasLocation W43873950581 @default.
- W4387395058 hasOpenAccess W4387395058 @default.
- W4387395058 hasPrimaryLocation W43873950581 @default.
- W4387395058 hasRelatedWork W1522196789 @default.
- W4387395058 hasRelatedWork W1998563493 @default.
- W4387395058 hasRelatedWork W2016533837 @default.
- W4387395058 hasRelatedWork W2892386716 @default.
- W4387395058 hasRelatedWork W3027020613 @default.
- W4387395058 hasRelatedWork W3167885074 @default.
- W4387395058 hasRelatedWork W4306164210 @default.
- W4387395058 hasRelatedWork W4313316311 @default.
- W4387395058 hasRelatedWork W4315434538 @default.
- W4387395058 hasRelatedWork W4362608745 @default.
- W4387395058 isParatext "false" @default.
- W4387395058 isRetracted "false" @default.
- W4387395058 workType "article" @default.