Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387396900> ?p ?o ?g. }
- W4387396900 endingPage "12" @default.
- W4387396900 startingPage "1" @default.
- W4387396900 abstract "One of the interesting characteristics of crime data is that criminal cases are often interrelated. Criminal acts may be similar, and similar incidents may occur consecutively by the same offender or by the same criminal group. Among many machine learning algorithms, network-based approaches are well-suited to reflect these associative characteristics. Applying machine learning to criminal networks composed of cases and their associates can predict potential suspects. This narrows the scope of an investigation, saving time and cost. However, inference from criminal networks is not straightforward as it requires being able to process complex information entangled with case-to-case, person-to-person, and case-to-person connections. Besides, being useful at a crime scene requires urgency. However, predictions from network-based machine learning algorithms are generally slow when the data is large and complex in structure. These limitations are an immediate barrier to any practical use of the criminal network geared by machine learning. In this study, we propose a criminal network-based suspect prediction framework. The network we designed has a unique structure, such as a sandwich panel, in which one side is a network of crime cases and the other side is a network of people such as victims, criminals, and witnesses. The two networks are connected by relationships between the case and the persons involved in the case. The proposed method is then further developed into a fast inference algorithm for large-scale criminal networks. Experiments on benchmark data showed that the fast inference algorithm significantly reduced execution time while still being competitive in performance comparisons of the original algorithm and other existing approaches. Based on actual crime data provided by the Korean National Police, several examples of how the proposed method is applied are shown." @default.
- W4387396900 created "2023-10-07" @default.
- W4387396900 creator A5020094627 @default.
- W4387396900 creator A5031340876 @default.
- W4387396900 creator A5038504015 @default.
- W4387396900 creator A5043830800 @default.
- W4387396900 creator A5076597400 @default.
- W4387396900 date "2023-10-06" @default.
- W4387396900 modified "2023-10-16" @default.
- W4387396900 title "Fast Prediction for Criminal Suspects through Neighbor Mutual Information-Based Latent Network" @default.
- W4387396900 cites W1628251817 @default.
- W4387396900 cites W1983320747 @default.
- W4387396900 cites W2053186076 @default.
- W4387396900 cites W2086236971 @default.
- W4387396900 cites W2086453833 @default.
- W4387396900 cites W2092939357 @default.
- W4387396900 cites W2094176393 @default.
- W4387396900 cites W2126185804 @default.
- W4387396900 cites W2131753116 @default.
- W4387396900 cites W2164837103 @default.
- W4387396900 cites W2321540385 @default.
- W4387396900 cites W2341234495 @default.
- W4387396900 cites W2341430361 @default.
- W4387396900 cites W2619095830 @default.
- W4387396900 cites W2795819231 @default.
- W4387396900 cites W2801334538 @default.
- W4387396900 cites W2910470126 @default.
- W4387396900 cites W2952628249 @default.
- W4387396900 cites W2964298336 @default.
- W4387396900 cites W2964660339 @default.
- W4387396900 cites W3037843003 @default.
- W4387396900 cites W3041623457 @default.
- W4387396900 cites W3130849827 @default.
- W4387396900 cites W3131485551 @default.
- W4387396900 cites W3181894699 @default.
- W4387396900 cites W4214587150 @default.
- W4387396900 cites W4241152325 @default.
- W4387396900 cites W4283520892 @default.
- W4387396900 cites W4296700956 @default.
- W4387396900 doi "https://doi.org/10.1155/2023/9922162" @default.
- W4387396900 hasPublicationYear "2023" @default.
- W4387396900 type Work @default.
- W4387396900 citedByCount "0" @default.
- W4387396900 crossrefType "journal-article" @default.
- W4387396900 hasAuthorship W4387396900A5020094627 @default.
- W4387396900 hasAuthorship W4387396900A5031340876 @default.
- W4387396900 hasAuthorship W4387396900A5038504015 @default.
- W4387396900 hasAuthorship W4387396900A5043830800 @default.
- W4387396900 hasAuthorship W4387396900A5076597400 @default.
- W4387396900 hasBestOaLocation W43873969001 @default.
- W4387396900 hasConcept C111919701 @default.
- W4387396900 hasConcept C117660856 @default.
- W4387396900 hasConcept C119857082 @default.
- W4387396900 hasConcept C124101348 @default.
- W4387396900 hasConcept C13280743 @default.
- W4387396900 hasConcept C154945302 @default.
- W4387396900 hasConcept C15744967 @default.
- W4387396900 hasConcept C185798385 @default.
- W4387396900 hasConcept C199360897 @default.
- W4387396900 hasConcept C205649164 @default.
- W4387396900 hasConcept C2776214188 @default.
- W4387396900 hasConcept C2778012447 @default.
- W4387396900 hasConcept C2778223634 @default.
- W4387396900 hasConcept C41008148 @default.
- W4387396900 hasConcept C73484699 @default.
- W4387396900 hasConcept C98045186 @default.
- W4387396900 hasConceptScore W4387396900C111919701 @default.
- W4387396900 hasConceptScore W4387396900C117660856 @default.
- W4387396900 hasConceptScore W4387396900C119857082 @default.
- W4387396900 hasConceptScore W4387396900C124101348 @default.
- W4387396900 hasConceptScore W4387396900C13280743 @default.
- W4387396900 hasConceptScore W4387396900C154945302 @default.
- W4387396900 hasConceptScore W4387396900C15744967 @default.
- W4387396900 hasConceptScore W4387396900C185798385 @default.
- W4387396900 hasConceptScore W4387396900C199360897 @default.
- W4387396900 hasConceptScore W4387396900C205649164 @default.
- W4387396900 hasConceptScore W4387396900C2776214188 @default.
- W4387396900 hasConceptScore W4387396900C2778012447 @default.
- W4387396900 hasConceptScore W4387396900C2778223634 @default.
- W4387396900 hasConceptScore W4387396900C41008148 @default.
- W4387396900 hasConceptScore W4387396900C73484699 @default.
- W4387396900 hasConceptScore W4387396900C98045186 @default.
- W4387396900 hasFunder F4320322030 @default.
- W4387396900 hasLocation W43873969001 @default.
- W4387396900 hasOpenAccess W4387396900 @default.
- W4387396900 hasPrimaryLocation W43873969001 @default.
- W4387396900 hasRelatedWork W2354954419 @default.
- W4387396900 hasRelatedWork W2376798967 @default.
- W4387396900 hasRelatedWork W2380515197 @default.
- W4387396900 hasRelatedWork W2386341712 @default.
- W4387396900 hasRelatedWork W2386736376 @default.
- W4387396900 hasRelatedWork W2387675036 @default.
- W4387396900 hasRelatedWork W2600500752 @default.
- W4387396900 hasRelatedWork W3009956925 @default.
- W4387396900 hasRelatedWork W3036361039 @default.
- W4387396900 hasRelatedWork W4386106059 @default.
- W4387396900 hasVolume "2023" @default.
- W4387396900 isParatext "false" @default.