Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387397313> ?p ?o ?g. }
- W4387397313 endingPage "22" @default.
- W4387397313 startingPage "1" @default.
- W4387397313 abstract "Summary The relative permeability expresses the mobility reduction factor when a fluid flows through a porous medium in the presence of another fluid and appears in Darcy’s law for multiphase flow. In this work, we replace Darcy’s law with more general momentum equations accounting for fluid-rock interaction (flow resistance), fluid-fluid interaction (drag), and Brinkman terms responding to gradients in fluid interstitial velocities. By coupling the momentum equations with phase transport equations, we study two important flow processes—forced imbibition (coreflooding) and countercurrent spontaneous imbibition. In the former, a constant water injection rate is applied and capillary forces are neglected, while in the latter, capillary forces drive the process and the total flux is zero. Our aim is to understand what relative permeabilities result from these systems and flow configurations. From previous work, when using momentum equations without Brinkman terms, unique saturation-dependent relative permeabilities are obtained for the two flow modes that depend on the flow mode. Now, with Brinkman terms included, the relative permeabilities depend on local spatial derivatives of interstitial velocity and pressure. Local relative permeabilities are calculated for both phases utilizing the ratio of phase Darcy velocity and phase pressure gradient. In addition, we use the Johnson-Bossler-Naumann (JBN) method for forced imbibition (with data simulated under the assumption of negligible capillary end effects) to calculate interpreted relative permeabilities from pressure drop and average saturation. Both flow setups are parameterized with literature data, and sensitivity analysis is performed. During coreflooding, Brinkman terms give a flatter saturation profile and higher front saturation. The saturation profile shape changes with time. Local water relative permeabilities are reduced, while they are slightly raised for oil. The saturation range where relative permeabilities can be evaluated locally is raised and made narrower with increased Brinkman terms. JBN relative permeabilities deviate from the local values: The trends in curves and saturation range are the same but more pronounced as they incorporate average measurements, including the strong impact at the inlet. Brinkman effects vanish after sufficient distance traveled, resulting in the unique saturation functions as a limit. Unsteady state (USS) relative permeabilities (based on transient data from single-phase injection) differ from steady-state (SS) relative permeabilities (based on SS data from coinjection of two fluids) because the Brinkman terms are zero at SS. During spontaneous imbibition, the higher effect from the Brinkman terms caused oil relative permeabilities to decrease at low water saturations and slightly increase at high saturations, while water relative permeability was only slightly reduced. The net effect was a delay in the imbibition profile. Local relative permeabilities approached the unique saturation functions without Brinkman terms deeper in the system because phase velocities (involved in the Brinkman terms) decreased with distance. In both systems, scaling and simulations demonstrate that the relative change in relative permeabilities due to Brinkman terms increases with the Brinkman coefficient, permeability, and inverse squared distance from the inlet." @default.
- W4387397313 created "2023-10-07" @default.
- W4387397313 creator A5012987808 @default.
- W4387397313 creator A5058466019 @default.
- W4387397313 date "2023-10-01" @default.
- W4387397313 modified "2023-10-07" @default.
- W4387397313 title "Effective Relative Permeabilities Based on Momentum Equations with Brinkman Terms and Viscous Coupling" @default.
- W4387397313 cites W1578086735 @default.
- W4387397313 cites W1616762337 @default.
- W4387397313 cites W1969126080 @default.
- W4387397313 cites W1969336820 @default.
- W4387397313 cites W1974144665 @default.
- W4387397313 cites W1977379485 @default.
- W4387397313 cites W1979621460 @default.
- W4387397313 cites W1980681442 @default.
- W4387397313 cites W1982402391 @default.
- W4387397313 cites W1994955607 @default.
- W4387397313 cites W2005634505 @default.
- W4387397313 cites W2010945250 @default.
- W4387397313 cites W2020926509 @default.
- W4387397313 cites W2022575635 @default.
- W4387397313 cites W2023675961 @default.
- W4387397313 cites W2029188744 @default.
- W4387397313 cites W2034606502 @default.
- W4387397313 cites W2034925355 @default.
- W4387397313 cites W2035397838 @default.
- W4387397313 cites W2036186181 @default.
- W4387397313 cites W2041480542 @default.
- W4387397313 cites W2043344082 @default.
- W4387397313 cites W2043443681 @default.
- W4387397313 cites W2044118236 @default.
- W4387397313 cites W2047225062 @default.
- W4387397313 cites W2049208793 @default.
- W4387397313 cites W2050086576 @default.
- W4387397313 cites W2050624061 @default.
- W4387397313 cites W2057220674 @default.
- W4387397313 cites W2069131694 @default.
- W4387397313 cites W2071696211 @default.
- W4387397313 cites W2075338008 @default.
- W4387397313 cites W2076588106 @default.
- W4387397313 cites W2079693243 @default.
- W4387397313 cites W2080795323 @default.
- W4387397313 cites W2082854483 @default.
- W4387397313 cites W2083873157 @default.
- W4387397313 cites W2086209676 @default.
- W4387397313 cites W2090537790 @default.
- W4387397313 cites W2102860695 @default.
- W4387397313 cites W2119187973 @default.
- W4387397313 cites W2240292214 @default.
- W4387397313 cites W2337349532 @default.
- W4387397313 cites W2413224395 @default.
- W4387397313 cites W2513970616 @default.
- W4387397313 cites W2524991649 @default.
- W4387397313 cites W2527677196 @default.
- W4387397313 cites W2544759280 @default.
- W4387397313 cites W2614735145 @default.
- W4387397313 cites W2621169052 @default.
- W4387397313 cites W2743559894 @default.
- W4387397313 cites W2745038187 @default.
- W4387397313 cites W2768006107 @default.
- W4387397313 cites W2777282388 @default.
- W4387397313 cites W2893348389 @default.
- W4387397313 cites W2923323971 @default.
- W4387397313 cites W2948097356 @default.
- W4387397313 cites W2986449130 @default.
- W4387397313 cites W2989843103 @default.
- W4387397313 cites W2996618220 @default.
- W4387397313 cites W3018948034 @default.
- W4387397313 cites W3139402287 @default.
- W4387397313 cites W3164131786 @default.
- W4387397313 cites W3201862396 @default.
- W4387397313 cites W3210521076 @default.
- W4387397313 cites W4206832447 @default.
- W4387397313 cites W4231585874 @default.
- W4387397313 cites W4236858519 @default.
- W4387397313 cites W4296777420 @default.
- W4387397313 cites W4318618285 @default.
- W4387397313 doi "https://doi.org/10.2118/214388-pa" @default.
- W4387397313 hasPublicationYear "2023" @default.
- W4387397313 type Work @default.
- W4387397313 citedByCount "0" @default.
- W4387397313 crossrefType "journal-article" @default.
- W4387397313 hasAuthorship W4387397313A5012987808 @default.
- W4387397313 hasAuthorship W4387397313A5058466019 @default.
- W4387397313 hasConcept C10138342 @default.
- W4387397313 hasConcept C105569014 @default.
- W4387397313 hasConcept C113378726 @default.
- W4387397313 hasConcept C114614502 @default.
- W4387397313 hasConcept C121332964 @default.
- W4387397313 hasConcept C162324750 @default.
- W4387397313 hasConcept C178790620 @default.
- W4387397313 hasConcept C185592680 @default.
- W4387397313 hasConcept C196806460 @default.
- W4387397313 hasConcept C33923547 @default.
- W4387397313 hasConcept C48797263 @default.
- W4387397313 hasConcept C57879066 @default.
- W4387397313 hasConcept C60718061 @default.
- W4387397313 hasConcept C6648577 @default.