Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387397918> ?p ?o ?g. }
- W4387397918 abstract "The peripheral nerves (PNs) innervate the dermis and epidermis, and are suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and the noise/background associated with the immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, Denoising Convolutional Neural Network (DnCNN), to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8 mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3, 7, 10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly, we found a positive correlation (R2 = 0.926) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues." @default.
- W4387397918 created "2023-10-07" @default.
- W4387397918 creator A5004093071 @default.
- W4387397918 creator A5006165502 @default.
- W4387397918 creator A5006400998 @default.
- W4387397918 creator A5018977529 @default.
- W4387397918 creator A5060485446 @default.
- W4387397918 creator A5061108957 @default.
- W4387397918 creator A5065352049 @default.
- W4387397918 creator A5073818707 @default.
- W4387397918 creator A5076998130 @default.
- W4387397918 creator A5080477542 @default.
- W4387397918 creator A5089099877 @default.
- W4387397918 date "2023-10-06" @default.
- W4387397918 modified "2023-10-15" @default.
- W4387397918 title "Quantifying innervation facilitated by deep learning in wound healing" @default.
- W4387397918 cites W114358018 @default.
- W4387397918 cites W121897100 @default.
- W4387397918 cites W1537669413 @default.
- W4387397918 cites W1551948265 @default.
- W4387397918 cites W1834049370 @default.
- W4387397918 cites W188704891 @default.
- W4387397918 cites W1918208288 @default.
- W4387397918 cites W1979005579 @default.
- W4387397918 cites W1984741208 @default.
- W4387397918 cites W1998172076 @default.
- W4387397918 cites W1998596632 @default.
- W4387397918 cites W2005350453 @default.
- W4387397918 cites W2022973904 @default.
- W4387397918 cites W2024339132 @default.
- W4387397918 cites W2029497643 @default.
- W4387397918 cites W2055967026 @default.
- W4387397918 cites W2059396066 @default.
- W4387397918 cites W2060729604 @default.
- W4387397918 cites W2063980154 @default.
- W4387397918 cites W2067050866 @default.
- W4387397918 cites W2071025763 @default.
- W4387397918 cites W2073036883 @default.
- W4387397918 cites W2082188905 @default.
- W4387397918 cites W2104827963 @default.
- W4387397918 cites W2110302282 @default.
- W4387397918 cites W2110473676 @default.
- W4387397918 cites W2136253074 @default.
- W4387397918 cites W2139277759 @default.
- W4387397918 cites W2142402689 @default.
- W4387397918 cites W2168768991 @default.
- W4387397918 cites W2170187238 @default.
- W4387397918 cites W2403847143 @default.
- W4387397918 cites W2444652377 @default.
- W4387397918 cites W2508457857 @default.
- W4387397918 cites W2556200261 @default.
- W4387397918 cites W2580035316 @default.
- W4387397918 cites W2589299715 @default.
- W4387397918 cites W2801585709 @default.
- W4387397918 cites W2936080613 @default.
- W4387397918 cites W2942540986 @default.
- W4387397918 cites W2950847951 @default.
- W4387397918 cites W2966964169 @default.
- W4387397918 cites W3000128551 @default.
- W4387397918 cites W3001446909 @default.
- W4387397918 cites W3006424164 @default.
- W4387397918 cites W3034592198 @default.
- W4387397918 cites W3045653173 @default.
- W4387397918 cites W3048875761 @default.
- W4387397918 cites W3114142629 @default.
- W4387397918 cites W3169358494 @default.
- W4387397918 cites W3169893408 @default.
- W4387397918 cites W3172254303 @default.
- W4387397918 cites W3179130615 @default.
- W4387397918 cites W3204001342 @default.
- W4387397918 cites W4206373959 @default.
- W4387397918 cites W4210589278 @default.
- W4387397918 cites W4213415519 @default.
- W4387397918 cites W4286490573 @default.
- W4387397918 doi "https://doi.org/10.1038/s41598-023-42743-5" @default.
- W4387397918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37803028" @default.
- W4387397918 hasPublicationYear "2023" @default.
- W4387397918 type Work @default.
- W4387397918 citedByCount "0" @default.
- W4387397918 crossrefType "journal-article" @default.
- W4387397918 hasAuthorship W4387397918A5004093071 @default.
- W4387397918 hasAuthorship W4387397918A5006165502 @default.
- W4387397918 hasAuthorship W4387397918A5006400998 @default.
- W4387397918 hasAuthorship W4387397918A5018977529 @default.
- W4387397918 hasAuthorship W4387397918A5060485446 @default.
- W4387397918 hasAuthorship W4387397918A5061108957 @default.
- W4387397918 hasAuthorship W4387397918A5065352049 @default.
- W4387397918 hasAuthorship W4387397918A5073818707 @default.
- W4387397918 hasAuthorship W4387397918A5076998130 @default.
- W4387397918 hasAuthorship W4387397918A5080477542 @default.
- W4387397918 hasAuthorship W4387397918A5089099877 @default.
- W4387397918 hasBestOaLocation W43873979181 @default.
- W4387397918 hasConcept C105702510 @default.
- W4387397918 hasConcept C136229726 @default.
- W4387397918 hasConcept C141071460 @default.
- W4387397918 hasConcept C142724271 @default.
- W4387397918 hasConcept C154945302 @default.
- W4387397918 hasConcept C204232928 @default.
- W4387397918 hasConcept C2776458125 @default.
- W4387397918 hasConcept C2776823239 @default.