Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387398021> ?p ?o ?g. }
- W4387398021 endingPage "100057" @default.
- W4387398021 startingPage "100057" @default.
- W4387398021 abstract "This work centers on methyl ester yield modeling; by Azadirachta Indica seed oil (AISO) transesterification, using Adaptive Neuro-fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) and Response Surface Methodology (RSM). AISO was obtained from the seeds of Azadirachta Indica tree. The oils were extracted from the seeds using solvent extraction method. The physicochemical properties of AISO and Azadirachta Indica seed oil methyl ester (MAISOt) were determined using standard methods. Fatty acid composition was determined using, Gas Chromatography (GC). Statistical evaluations of these models show their efficacy in the order RSM < ANN < ANFIS, with ANFIS as the best; as indicated by its very high R2 value of 0.9999 and low RMS error value of 0.0011. The ANFIS predicted minimum and maximum values for % methyl ester yields were 54.66 and 90.25 %, respectively, while the other models predicted similar methyl ester yields. The physicochemical characterization results of AISO and MAISOt samples, show that their respective viscosity, dielectric strength (DS), pour and flash points values were (8.83 and 3.47 mm 2s−1), (33.42 and 48.93 KV), (9 and -6 °C), and (162 and 174 °C). These results indicated the MAISOt sample’s potential use as a transformer fluid. GC result indicated that MAISOt was unsaturated. Finally, on the basis of the gotten model results, ANFIS was adjudged as the best predictive model, followed by ANN and RSM, in that order." @default.
- W4387398021 created "2023-10-07" @default.
- W4387398021 creator A5031615730 @default.
- W4387398021 creator A5036920289 @default.
- W4387398021 creator A5045754432 @default.
- W4387398021 creator A5054269089 @default.
- W4387398021 creator A5069199700 @default.
- W4387398021 creator A5074477128 @default.
- W4387398021 date "2023-10-01" @default.
- W4387398021 modified "2023-10-07" @default.
- W4387398021 title "Application of efficient soft computing approaches for modeling methyl ester yield from Azadirachta Indica (Neem) seed oil: A comparative study of RSM, ANN and ANFIS" @default.
- W4387398021 cites W1967304952 @default.
- W4387398021 cites W1992281368 @default.
- W4387398021 cites W1994524082 @default.
- W4387398021 cites W1994699466 @default.
- W4387398021 cites W2003204858 @default.
- W4387398021 cites W2008771593 @default.
- W4387398021 cites W2011182960 @default.
- W4387398021 cites W2012563352 @default.
- W4387398021 cites W2014922719 @default.
- W4387398021 cites W2021021447 @default.
- W4387398021 cites W2043193658 @default.
- W4387398021 cites W2047752159 @default.
- W4387398021 cites W2050292928 @default.
- W4387398021 cites W2054995800 @default.
- W4387398021 cites W2063977536 @default.
- W4387398021 cites W2069823272 @default.
- W4387398021 cites W2076019128 @default.
- W4387398021 cites W2076328674 @default.
- W4387398021 cites W2077872874 @default.
- W4387398021 cites W2100803620 @default.
- W4387398021 cites W2105579132 @default.
- W4387398021 cites W2107073658 @default.
- W4387398021 cites W2139288025 @default.
- W4387398021 cites W2149737157 @default.
- W4387398021 cites W2158585406 @default.
- W4387398021 cites W2193236247 @default.
- W4387398021 cites W2207177592 @default.
- W4387398021 cites W2313571274 @default.
- W4387398021 cites W2335173577 @default.
- W4387398021 cites W2343249548 @default.
- W4387398021 cites W2460629008 @default.
- W4387398021 cites W2486944370 @default.
- W4387398021 cites W2506935491 @default.
- W4387398021 cites W2508459623 @default.
- W4387398021 cites W2517183847 @default.
- W4387398021 cites W2518877425 @default.
- W4387398021 cites W2531705056 @default.
- W4387398021 cites W2549685649 @default.
- W4387398021 cites W2581028320 @default.
- W4387398021 cites W2811389157 @default.
- W4387398021 cites W2891948075 @default.
- W4387398021 cites W2920931631 @default.
- W4387398021 cites W2963125199 @default.
- W4387398021 cites W2970075584 @default.
- W4387398021 cites W2970143653 @default.
- W4387398021 cites W3000364026 @default.
- W4387398021 cites W3017276734 @default.
- W4387398021 cites W3047534022 @default.
- W4387398021 cites W3125960663 @default.
- W4387398021 cites W3136606511 @default.
- W4387398021 cites W3163623092 @default.
- W4387398021 cites W3215857636 @default.
- W4387398021 cites W356895909 @default.
- W4387398021 cites W4200081936 @default.
- W4387398021 cites W4229059832 @default.
- W4387398021 cites W4280503062 @default.
- W4387398021 doi "https://doi.org/10.1016/j.grets.2023.100057" @default.
- W4387398021 hasPublicationYear "2023" @default.
- W4387398021 type Work @default.
- W4387398021 citedByCount "0" @default.
- W4387398021 crossrefType "journal-article" @default.
- W4387398021 hasAuthorship W4387398021A5031615730 @default.
- W4387398021 hasAuthorship W4387398021A5036920289 @default.
- W4387398021 hasAuthorship W4387398021A5045754432 @default.
- W4387398021 hasAuthorship W4387398021A5054269089 @default.
- W4387398021 hasAuthorship W4387398021A5069199700 @default.
- W4387398021 hasAuthorship W4387398021A5074477128 @default.
- W4387398021 hasBestOaLocation W43873980211 @default.
- W4387398021 hasConcept C105795698 @default.
- W4387398021 hasConcept C144027150 @default.
- W4387398021 hasConcept C150077022 @default.
- W4387398021 hasConcept C154945302 @default.
- W4387398021 hasConcept C161790260 @default.
- W4387398021 hasConcept C178790620 @default.
- W4387398021 hasConcept C185592680 @default.
- W4387398021 hasConcept C186108316 @default.
- W4387398021 hasConcept C192562407 @default.
- W4387398021 hasConcept C195975749 @default.
- W4387398021 hasConcept C2777241282 @default.
- W4387398021 hasConcept C2779607525 @default.
- W4387398021 hasConcept C2780209386 @default.
- W4387398021 hasConcept C2780568294 @default.
- W4387398021 hasConcept C2781035296 @default.
- W4387398021 hasConcept C33923547 @default.
- W4387398021 hasConcept C41008148 @default.
- W4387398021 hasConcept C52896960 @default.
- W4387398021 hasConcept C58166 @default.