Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387400306> ?p ?o ?g. }
- W4387400306 endingPage "119358" @default.
- W4387400306 startingPage "119358" @default.
- W4387400306 abstract "Basic thermodynamic data plays an important role in chemical applications. However, the traditional acquisition of thermodynamic data through experiments is laborious. Thermodynamic data prediction is considered as an alternative to the experiments, especially when qualitative analysis is needed prior to experimental studies. In this work, we report a successful machine-learning based approach to predict the fundamental thermodynamics characteristics of vapor–liquid equilibrium (VLE). A new dataset of the VLE experimental data of 210 binary mixtures with screened descriptors were constructed. The obtained results show that the VLE characteristics of the target system can be fully revealed by machine learning methods and random forest has more excellent predictive ability on the VLE behavior than the neural network. This work provides a new approach to the prediction of VLE data and useful information for the mechanistic study on the VLE phenomenon." @default.
- W4387400306 created "2023-10-07" @default.
- W4387400306 creator A5014068004 @default.
- W4387400306 creator A5047583150 @default.
- W4387400306 creator A5058668377 @default.
- W4387400306 creator A5059742826 @default.
- W4387400306 creator A5068893079 @default.
- W4387400306 creator A5078511157 @default.
- W4387400306 date "2023-12-01" @default.
- W4387400306 modified "2023-10-12" @default.
- W4387400306 title "Vapor-liquid phase equilibria behavior prediction of binary mixtures using machine learning" @default.
- W4387400306 cites W114419744 @default.
- W4387400306 cites W1969085661 @default.
- W4387400306 cites W1971721583 @default.
- W4387400306 cites W1972295548 @default.
- W4387400306 cites W1976421928 @default.
- W4387400306 cites W1976565273 @default.
- W4387400306 cites W1987066562 @default.
- W4387400306 cites W2005910483 @default.
- W4387400306 cites W2019639629 @default.
- W4387400306 cites W2030524365 @default.
- W4387400306 cites W2035423586 @default.
- W4387400306 cites W2035476315 @default.
- W4387400306 cites W2039027808 @default.
- W4387400306 cites W2055562792 @default.
- W4387400306 cites W2102686714 @default.
- W4387400306 cites W2120735432 @default.
- W4387400306 cites W2427923525 @default.
- W4387400306 cites W2597927023 @default.
- W4387400306 cites W2734763324 @default.
- W4387400306 cites W2773789527 @default.
- W4387400306 cites W2790808809 @default.
- W4387400306 cites W2799567665 @default.
- W4387400306 cites W2884430236 @default.
- W4387400306 cites W2952689417 @default.
- W4387400306 cites W2979753613 @default.
- W4387400306 cites W2996830277 @default.
- W4387400306 cites W3007550778 @default.
- W4387400306 cites W3010521003 @default.
- W4387400306 cites W3014269061 @default.
- W4387400306 cites W3037005845 @default.
- W4387400306 cites W3093687066 @default.
- W4387400306 cites W3098530784 @default.
- W4387400306 cites W3110314115 @default.
- W4387400306 cites W3119967964 @default.
- W4387400306 cites W3140615080 @default.
- W4387400306 cites W3206152632 @default.
- W4387400306 cites W4223517519 @default.
- W4387400306 cites W4254547512 @default.
- W4387400306 cites W4281757722 @default.
- W4387400306 cites W4282542635 @default.
- W4387400306 cites W4283027619 @default.
- W4387400306 cites W4297934180 @default.
- W4387400306 cites W4307031851 @default.
- W4387400306 cites W4312129726 @default.
- W4387400306 cites W4320473078 @default.
- W4387400306 cites W4324344616 @default.
- W4387400306 doi "https://doi.org/10.1016/j.ces.2023.119358" @default.
- W4387400306 hasPublicationYear "2023" @default.
- W4387400306 type Work @default.
- W4387400306 citedByCount "0" @default.
- W4387400306 crossrefType "journal-article" @default.
- W4387400306 hasAuthorship W4387400306A5014068004 @default.
- W4387400306 hasAuthorship W4387400306A5047583150 @default.
- W4387400306 hasAuthorship W4387400306A5058668377 @default.
- W4387400306 hasAuthorship W4387400306A5059742826 @default.
- W4387400306 hasAuthorship W4387400306A5068893079 @default.
- W4387400306 hasAuthorship W4387400306A5078511157 @default.
- W4387400306 hasConcept C105795698 @default.
- W4387400306 hasConcept C119857082 @default.
- W4387400306 hasConcept C121332964 @default.
- W4387400306 hasConcept C154945302 @default.
- W4387400306 hasConcept C178790620 @default.
- W4387400306 hasConcept C185592680 @default.
- W4387400306 hasConcept C18762648 @default.
- W4387400306 hasConcept C2986159531 @default.
- W4387400306 hasConcept C33038907 @default.
- W4387400306 hasConcept C33923547 @default.
- W4387400306 hasConcept C41008148 @default.
- W4387400306 hasConcept C44280652 @default.
- W4387400306 hasConcept C48372109 @default.
- W4387400306 hasConcept C50644808 @default.
- W4387400306 hasConcept C55037315 @default.
- W4387400306 hasConcept C94375191 @default.
- W4387400306 hasConcept C97355855 @default.
- W4387400306 hasConceptScore W4387400306C105795698 @default.
- W4387400306 hasConceptScore W4387400306C119857082 @default.
- W4387400306 hasConceptScore W4387400306C121332964 @default.
- W4387400306 hasConceptScore W4387400306C154945302 @default.
- W4387400306 hasConceptScore W4387400306C178790620 @default.
- W4387400306 hasConceptScore W4387400306C185592680 @default.
- W4387400306 hasConceptScore W4387400306C18762648 @default.
- W4387400306 hasConceptScore W4387400306C2986159531 @default.
- W4387400306 hasConceptScore W4387400306C33038907 @default.
- W4387400306 hasConceptScore W4387400306C33923547 @default.
- W4387400306 hasConceptScore W4387400306C41008148 @default.
- W4387400306 hasConceptScore W4387400306C44280652 @default.
- W4387400306 hasConceptScore W4387400306C48372109 @default.