Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387400896> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4387400896 abstract "The integration of global navigation satellite system (GNSS) and inertial navigation system (INS) is a powerful technology that provides accurate, available, and continuous navigation solutions, which is critical for autonomous vehicles (Mikhaylov et al., 2020). Due to the advancements in micro-electromechanical system (MEMS) inertial sensor technology, the use of low-cost, small size, and low power consumption MEMS inertial measurement units (IMU) becomes attractive for land vehicles (Li et al., 2019; Yang et al., 2014). However, the INS cannot operate stand-alone to provide long-term accuracy in the GNSS challenging environments because the errors in the IMU measurements are integrated into the navigation solutions (Woodman, 2007). The accumulated errors and the IMU measurement errors are usually estimated by an error-state extended Kalman filter (ES-EKF) (Madyastha et al., 2011). The performance of the integration algorithm is highly dependent on the knowledge of noise statistics and system models. The noise covariance matrices are formulated empirically under independent Gaussian noise assumptions whereas the system models are designed by linearizing the nonlinear equations of the system. Considering the highly nonlinear error propagation and the complex IMU error model of low-cost MEMS IMU, the ES-EKF based GNSS/INS integration is not sufficient for meeting the navigation requirements of land vehicles. In order to address the nonlinear issue, several advanced integration algorithms are utilized such as unscented Kalman filter (Meng et al., 2016), cubature Kalman filter (Cui et al., 2017) and factor graph (Wen et al., 2021). An alternative approach is to estimate other IMU error components other than bias (Godha, 2006). Despite advancements, these algorithms are still unable to optimally address nonlinear issues or require significant computational loads. On the other hand, external sensors such as odometer, lidar, and camera can be integrated into the system to improve the performance by providing additional measurements (Chiang et al., 2019). The use of auxiliary sensors could limit the application areas and increase costs. Given the remarkable success of deep learning (DL) in various fields and the impressive learning capability of deep neural networks (DNN) (LeCun et al., 2015), we present a DL-assisted integration algorithm in this paper." @default.
- W4387400896 created "2023-10-07" @default.
- W4387400896 creator A5000166507 @default.
- W4387400896 creator A5009888511 @default.
- W4387400896 creator A5010503268 @default.
- W4387400896 creator A5031543844 @default.
- W4387400896 date "2023-10-05" @default.
- W4387400896 modified "2023-10-07" @default.
- W4387400896 title "First Real-World Results of a Deep Neural Network Assisted GNSS/INS Kalman-Filter with MEMS Inertial Sensors for Autonomous Vehicle" @default.
- W4387400896 doi "https://doi.org/10.33012/2023.19301" @default.
- W4387400896 hasPublicationYear "2023" @default.
- W4387400896 type Work @default.
- W4387400896 citedByCount "0" @default.
- W4387400896 crossrefType "proceedings-article" @default.
- W4387400896 hasAuthorship W4387400896A5000166507 @default.
- W4387400896 hasAuthorship W4387400896A5009888511 @default.
- W4387400896 hasAuthorship W4387400896A5010503268 @default.
- W4387400896 hasAuthorship W4387400896A5031543844 @default.
- W4387400896 hasConcept C105795698 @default.
- W4387400896 hasConcept C115961682 @default.
- W4387400896 hasConcept C121332964 @default.
- W4387400896 hasConcept C128651787 @default.
- W4387400896 hasConcept C14279187 @default.
- W4387400896 hasConcept C154945302 @default.
- W4387400896 hasConcept C157286648 @default.
- W4387400896 hasConcept C173386949 @default.
- W4387400896 hasConcept C178650346 @default.
- W4387400896 hasConcept C193183557 @default.
- W4387400896 hasConcept C206833254 @default.
- W4387400896 hasConcept C2775924081 @default.
- W4387400896 hasConcept C33923547 @default.
- W4387400896 hasConcept C41008148 @default.
- W4387400896 hasConcept C47446073 @default.
- W4387400896 hasConcept C60229501 @default.
- W4387400896 hasConcept C62520636 @default.
- W4387400896 hasConcept C76155785 @default.
- W4387400896 hasConcept C79061980 @default.
- W4387400896 hasConcept C99498987 @default.
- W4387400896 hasConceptScore W4387400896C105795698 @default.
- W4387400896 hasConceptScore W4387400896C115961682 @default.
- W4387400896 hasConceptScore W4387400896C121332964 @default.
- W4387400896 hasConceptScore W4387400896C128651787 @default.
- W4387400896 hasConceptScore W4387400896C14279187 @default.
- W4387400896 hasConceptScore W4387400896C154945302 @default.
- W4387400896 hasConceptScore W4387400896C157286648 @default.
- W4387400896 hasConceptScore W4387400896C173386949 @default.
- W4387400896 hasConceptScore W4387400896C178650346 @default.
- W4387400896 hasConceptScore W4387400896C193183557 @default.
- W4387400896 hasConceptScore W4387400896C206833254 @default.
- W4387400896 hasConceptScore W4387400896C2775924081 @default.
- W4387400896 hasConceptScore W4387400896C33923547 @default.
- W4387400896 hasConceptScore W4387400896C41008148 @default.
- W4387400896 hasConceptScore W4387400896C47446073 @default.
- W4387400896 hasConceptScore W4387400896C60229501 @default.
- W4387400896 hasConceptScore W4387400896C62520636 @default.
- W4387400896 hasConceptScore W4387400896C76155785 @default.
- W4387400896 hasConceptScore W4387400896C79061980 @default.
- W4387400896 hasConceptScore W4387400896C99498987 @default.
- W4387400896 hasLocation W43874008961 @default.
- W4387400896 hasOpenAccess W4387400896 @default.
- W4387400896 hasPrimaryLocation W43874008961 @default.
- W4387400896 hasRelatedWork W1494447669 @default.
- W4387400896 hasRelatedWork W2030440043 @default.
- W4387400896 hasRelatedWork W2038183074 @default.
- W4387400896 hasRelatedWork W2055925535 @default.
- W4387400896 hasRelatedWork W2119957445 @default.
- W4387400896 hasRelatedWork W2597513713 @default.
- W4387400896 hasRelatedWork W2803265893 @default.
- W4387400896 hasRelatedWork W2966140393 @default.
- W4387400896 hasRelatedWork W3206500252 @default.
- W4387400896 hasRelatedWork W4280578603 @default.
- W4387400896 isParatext "false" @default.
- W4387400896 isRetracted "false" @default.
- W4387400896 workType "article" @default.