Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387403409> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387403409 endingPage "01084" @default.
- W4387403409 startingPage "01084" @default.
- W4387403409 abstract "The development of reliable and sustainable traffic sign detection under difficult weather conditions, or DFR-TSD, is a key step in creating effective, safe, and sustainable autonomous driving systems. The suggested sustainable framework makes use of deep learning techniques to overcome the drawbacks of the current traffic sign detection systems, especially in difficult weather circumstances like haze and snow. The system uses a sustainable CNN pre-processing step to make traffic signs more visible in photos that have been impacted by the weather, followed by a sustainable pre-trained ResNet-50 model to recognize traffic signs. On the CURE-TSD dataset, which includes difficult weather circumstances such as haze, snow, and fog, the suggested sustainable framework was assessed. The testing findings showed how sustainably well the suggested framework performed in identifying traffic signs in adverse weather. The suggested sustainable framework outperforms previous approaches with a sustainable accuracy rating of 98.83%. The outcomes show that sustainable deep learning methods have the potential to enhance traffic sign identification models' functionality. The proposed sustainable framework’s front end offers a user-friendly interface that enables users to upload test photographs and view the results of the detection. There are four sustainable buttons on the UI for loading the model, uploading test photographs, spotting signs, and seeing the training graph. The Tkinter framework, which offers a user-friendly GUI toolkit that enables developers to quickly design and customize sustainable GUI programs, is used to develop the front end. The suggested sustainable DFR-TSD framework is a potential sustainable option for reliable traffic sign detection in adverse weather due to the sustainable pre-processing step, the sustainable pre-trained ResNet-50 model, and the sustainable user-friendly interface." @default.
- W4387403409 created "2023-10-07" @default.
- W4387403409 creator A5012206289 @default.
- W4387403409 creator A5028891181 @default.
- W4387403409 creator A5035447320 @default.
- W4387403409 creator A5056920945 @default.
- W4387403409 creator A5077784798 @default.
- W4387403409 creator A5093017132 @default.
- W4387403409 date "2023-01-01" @default.
- W4387403409 modified "2023-10-07" @default.
- W4387403409 title "DFR-TSD: A Sustainable Deep Learning Based Framework for Sustainable Robust Traffic Sign Detection under Challenging Weather Conditions" @default.
- W4387403409 cites W2163525947 @default.
- W4387403409 cites W2596664077 @default.
- W4387403409 cites W2921281985 @default.
- W4387403409 cites W2932472916 @default.
- W4387403409 cites W3008735069 @default.
- W4387403409 cites W3016478145 @default.
- W4387403409 cites W4241867176 @default.
- W4387403409 doi "https://doi.org/10.1051/e3sconf/202343001084" @default.
- W4387403409 hasPublicationYear "2023" @default.
- W4387403409 type Work @default.
- W4387403409 citedByCount "0" @default.
- W4387403409 crossrefType "journal-article" @default.
- W4387403409 hasAuthorship W4387403409A5012206289 @default.
- W4387403409 hasAuthorship W4387403409A5028891181 @default.
- W4387403409 hasAuthorship W4387403409A5035447320 @default.
- W4387403409 hasAuthorship W4387403409A5056920945 @default.
- W4387403409 hasAuthorship W4387403409A5077784798 @default.
- W4387403409 hasAuthorship W4387403409A5093017132 @default.
- W4387403409 hasBestOaLocation W43874034091 @default.
- W4387403409 hasConcept C108583219 @default.
- W4387403409 hasConcept C136764020 @default.
- W4387403409 hasConcept C154945302 @default.
- W4387403409 hasConcept C17744445 @default.
- W4387403409 hasConcept C18903297 @default.
- W4387403409 hasConcept C199539241 @default.
- W4387403409 hasConcept C29825287 @default.
- W4387403409 hasConcept C41008148 @default.
- W4387403409 hasConcept C552854447 @default.
- W4387403409 hasConcept C66204764 @default.
- W4387403409 hasConcept C71901391 @default.
- W4387403409 hasConcept C76155785 @default.
- W4387403409 hasConcept C86803240 @default.
- W4387403409 hasConceptScore W4387403409C108583219 @default.
- W4387403409 hasConceptScore W4387403409C136764020 @default.
- W4387403409 hasConceptScore W4387403409C154945302 @default.
- W4387403409 hasConceptScore W4387403409C17744445 @default.
- W4387403409 hasConceptScore W4387403409C18903297 @default.
- W4387403409 hasConceptScore W4387403409C199539241 @default.
- W4387403409 hasConceptScore W4387403409C29825287 @default.
- W4387403409 hasConceptScore W4387403409C41008148 @default.
- W4387403409 hasConceptScore W4387403409C552854447 @default.
- W4387403409 hasConceptScore W4387403409C66204764 @default.
- W4387403409 hasConceptScore W4387403409C71901391 @default.
- W4387403409 hasConceptScore W4387403409C76155785 @default.
- W4387403409 hasConceptScore W4387403409C86803240 @default.
- W4387403409 hasLocation W43874034091 @default.
- W4387403409 hasOpenAccess W4387403409 @default.
- W4387403409 hasPrimaryLocation W43874034091 @default.
- W4387403409 hasRelatedWork W2003209439 @default.
- W4387403409 hasRelatedWork W2358319515 @default.
- W4387403409 hasRelatedWork W2390344072 @default.
- W4387403409 hasRelatedWork W2497626292 @default.
- W4387403409 hasRelatedWork W2972592048 @default.
- W4387403409 hasRelatedWork W3037018281 @default.
- W4387403409 hasRelatedWork W4312214821 @default.
- W4387403409 hasRelatedWork W4321854979 @default.
- W4387403409 hasRelatedWork W4361862506 @default.
- W4387403409 hasRelatedWork W2944823289 @default.
- W4387403409 hasVolume "430" @default.
- W4387403409 isParatext "false" @default.
- W4387403409 isRetracted "false" @default.
- W4387403409 workType "article" @default.