Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387403797> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387403797 abstract "The digital news preservation and management of low-resource languages are challenging tasks, especially in vast collections. Unique identification of individual digital objects is possible with well-defined attributes to assure efficient management, such as access, retrieval, preservation, usability, and transformability. The metadata element set is required to maximize the available attributes related to the digital objects. To create a comprehensive metadata set that contains all the necessary attributes and data about the digital news objects. It is more challenging and complicated when the archive contains articles from low-resourced and morphologically complex languages like Urdu and Arabic, which is difficult for machines to understand. The study presents challenges in low-resource languages (LRL) and research challenges. This metadata will help to link news articles based on similarity with other news articles stored in the digital news stories archive (DNSA) and ensures accessibility. In this study, we introduced 38 metadata elements set for the digital news stories preservation (DNSP) framework, of which 16 are explicit and 12 are implicit metadata elements. The paper presents how the digital news stories archive (DNSA) is enhanced to a multilingual archive and discusses the digital news stories extractor, which addresses major issues in implementing low-resource languages and facilitates normalized format migration. The extraction results are presented in detail for high-resource languages, that is, English, and low-resource languages (HRL), that is, Urdu and Arabic. The LRL encountered a high error rate during preservation compared to HRL, 10%, and 03%, respectively. The metadata extraction results show that HRL sources support all metadata elements as compared to LRL. The LRL has good support for explicit meta elements and many implicit meta elements with low extraction percentages. The LRL needs a more detailed study for accurate news content extraction and archiving for future access." @default.
- W4387403797 created "2023-10-07" @default.
- W4387403797 creator A5012093372 @default.
- W4387403797 creator A5031701396 @default.
- W4387403797 creator A5038898162 @default.
- W4387403797 creator A5039868149 @default.
- W4387403797 creator A5071256285 @default.
- W4387403797 date "2023-10-01" @default.
- W4387403797 modified "2023-10-07" @default.
- W4387403797 title "Metadata for Efficient Management of Digital News Articles in Multilingual News Archives" @default.
- W4387403797 cites W1968528175 @default.
- W4387403797 cites W2582726363 @default.
- W4387403797 cites W2620969108 @default.
- W4387403797 cites W2778474815 @default.
- W4387403797 cites W2781562636 @default.
- W4387403797 cites W2915357442 @default.
- W4387403797 cites W2921689717 @default.
- W4387403797 cites W2958725257 @default.
- W4387403797 cites W3001654774 @default.
- W4387403797 cites W3047584151 @default.
- W4387403797 cites W3105130981 @default.
- W4387403797 cites W3169369929 @default.
- W4387403797 cites W4206473080 @default.
- W4387403797 cites W4283662018 @default.
- W4387403797 cites W841229804 @default.
- W4387403797 doi "https://doi.org/10.1177/21582440231201368" @default.
- W4387403797 hasPublicationYear "2023" @default.
- W4387403797 type Work @default.
- W4387403797 citedByCount "0" @default.
- W4387403797 crossrefType "journal-article" @default.
- W4387403797 hasAuthorship W4387403797A5012093372 @default.
- W4387403797 hasAuthorship W4387403797A5031701396 @default.
- W4387403797 hasAuthorship W4387403797A5038898162 @default.
- W4387403797 hasAuthorship W4387403797A5039868149 @default.
- W4387403797 hasAuthorship W4387403797A5071256285 @default.
- W4387403797 hasBestOaLocation W43874037971 @default.
- W4387403797 hasConcept C136764020 @default.
- W4387403797 hasConcept C153048206 @default.
- W4387403797 hasConcept C206345919 @default.
- W4387403797 hasConcept C23123220 @default.
- W4387403797 hasConcept C2779308522 @default.
- W4387403797 hasConcept C31258907 @default.
- W4387403797 hasConcept C31972630 @default.
- W4387403797 hasConcept C41008148 @default.
- W4387403797 hasConcept C45874996 @default.
- W4387403797 hasConcept C8797682 @default.
- W4387403797 hasConcept C93518851 @default.
- W4387403797 hasConceptScore W4387403797C136764020 @default.
- W4387403797 hasConceptScore W4387403797C153048206 @default.
- W4387403797 hasConceptScore W4387403797C206345919 @default.
- W4387403797 hasConceptScore W4387403797C23123220 @default.
- W4387403797 hasConceptScore W4387403797C2779308522 @default.
- W4387403797 hasConceptScore W4387403797C31258907 @default.
- W4387403797 hasConceptScore W4387403797C31972630 @default.
- W4387403797 hasConceptScore W4387403797C41008148 @default.
- W4387403797 hasConceptScore W4387403797C45874996 @default.
- W4387403797 hasConceptScore W4387403797C8797682 @default.
- W4387403797 hasConceptScore W4387403797C93518851 @default.
- W4387403797 hasIssue "4" @default.
- W4387403797 hasLocation W43874037971 @default.
- W4387403797 hasOpenAccess W4387403797 @default.
- W4387403797 hasPrimaryLocation W43874037971 @default.
- W4387403797 hasRelatedWork W1503116306 @default.
- W4387403797 hasRelatedWork W1552553528 @default.
- W4387403797 hasRelatedWork W2008531296 @default.
- W4387403797 hasRelatedWork W2374379029 @default.
- W4387403797 hasRelatedWork W2379265733 @default.
- W4387403797 hasRelatedWork W2394393789 @default.
- W4387403797 hasRelatedWork W2497487026 @default.
- W4387403797 hasRelatedWork W3021038098 @default.
- W4387403797 hasRelatedWork W3023161639 @default.
- W4387403797 hasRelatedWork W2183628870 @default.
- W4387403797 hasVolume "13" @default.
- W4387403797 isParatext "false" @default.
- W4387403797 isRetracted "false" @default.
- W4387403797 workType "article" @default.