Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387403946> ?p ?o ?g. }
- W4387403946 abstract "The optimal power flow problem in power systems is characterized by a number of complex objectives and constraints, which aim to optimize the total fuel cost, emissions, active power loss, voltage magnitude deviation, and other metrics simultaneously. These conflicting objectives and strict constraints challenge existing optimizers in balancing between active power and reactive power, along with good trade-offs among many metrics. To address these difficulties, this paper develops a co-evolutionary algorithm to solve the constrained many-objective optimization problem of optimal power flow, which evolves three populations with different selection strategies. These populations are evolved towards different parts of the huge objective space divided by large infeasible regions, and the cooperation between them renders assistance to the search for feasible and Pareto-optimal solutions. According to the experimental results on benchmark problems and the IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems, the proposed algorithm is superior over peer algorithms in solving constrained many-objective optimization problems, especially the optimal power flow problems." @default.
- W4387403946 created "2023-10-07" @default.
- W4387403946 creator A5000130041 @default.
- W4387403946 creator A5028634381 @default.
- W4387403946 creator A5030608884 @default.
- W4387403946 creator A5051219791 @default.
- W4387403946 creator A5058755242 @default.
- W4387403946 creator A5070015170 @default.
- W4387403946 date "2023-10-06" @default.
- W4387403946 modified "2023-10-07" @default.
- W4387403946 title "Solving optimal power flow problems via a constrained many-objective co-evolutionary algorithm" @default.
- W4387403946 cites W1833634424 @default.
- W4387403946 cites W2022485595 @default.
- W4387403946 cites W2040622444 @default.
- W4387403946 cites W2072661909 @default.
- W4387403946 cites W2098907614 @default.
- W4387403946 cites W2106424475 @default.
- W4387403946 cites W2108525724 @default.
- W4387403946 cites W2112896153 @default.
- W4387403946 cites W2126105956 @default.
- W4387403946 cites W2128357515 @default.
- W4387403946 cites W2143381319 @default.
- W4387403946 cites W2153654820 @default.
- W4387403946 cites W2161694265 @default.
- W4387403946 cites W2313094906 @default.
- W4387403946 cites W2473675251 @default.
- W4387403946 cites W2751605210 @default.
- W4387403946 cites W2764251381 @default.
- W4387403946 cites W2790533669 @default.
- W4387403946 cites W2888338796 @default.
- W4387403946 cites W2894825269 @default.
- W4387403946 cites W2904536775 @default.
- W4387403946 cites W2914595713 @default.
- W4387403946 cites W2932748297 @default.
- W4387403946 cites W2941901799 @default.
- W4387403946 cites W2944969035 @default.
- W4387403946 cites W2962947982 @default.
- W4387403946 cites W2963115819 @default.
- W4387403946 cites W2971545714 @default.
- W4387403946 cites W3009780798 @default.
- W4387403946 cites W3014866728 @default.
- W4387403946 cites W3036925570 @default.
- W4387403946 cites W3045883990 @default.
- W4387403946 cites W3093856175 @default.
- W4387403946 cites W3102274955 @default.
- W4387403946 cites W3103078901 @default.
- W4387403946 cites W3105750523 @default.
- W4387403946 cites W3126352999 @default.
- W4387403946 cites W3133727220 @default.
- W4387403946 cites W3134125492 @default.
- W4387403946 cites W3181547049 @default.
- W4387403946 cites W3195664246 @default.
- W4387403946 cites W3207282689 @default.
- W4387403946 cites W4206918614 @default.
- W4387403946 cites W4214710237 @default.
- W4387403946 cites W4214941022 @default.
- W4387403946 cites W4221017723 @default.
- W4387403946 cites W4226018756 @default.
- W4387403946 cites W4229333634 @default.
- W4387403946 cites W4281783260 @default.
- W4387403946 cites W4285219208 @default.
- W4387403946 cites W4286515866 @default.
- W4387403946 cites W4298002359 @default.
- W4387403946 cites W4309686773 @default.
- W4387403946 cites W4386002848 @default.
- W4387403946 doi "https://doi.org/10.3389/fenrg.2023.1293193" @default.
- W4387403946 hasPublicationYear "2023" @default.
- W4387403946 type Work @default.
- W4387403946 citedByCount "0" @default.
- W4387403946 crossrefType "journal-article" @default.
- W4387403946 hasAuthorship W4387403946A5000130041 @default.
- W4387403946 hasAuthorship W4387403946A5028634381 @default.
- W4387403946 hasAuthorship W4387403946A5030608884 @default.
- W4387403946 hasAuthorship W4387403946A5051219791 @default.
- W4387403946 hasAuthorship W4387403946A5058755242 @default.
- W4387403946 hasAuthorship W4387403946A5070015170 @default.
- W4387403946 hasBestOaLocation W43874039461 @default.
- W4387403946 hasConcept C108755667 @default.
- W4387403946 hasConcept C121332964 @default.
- W4387403946 hasConcept C126255220 @default.
- W4387403946 hasConcept C13280743 @default.
- W4387403946 hasConcept C137635306 @default.
- W4387403946 hasConcept C137836250 @default.
- W4387403946 hasConcept C154945302 @default.
- W4387403946 hasConcept C159149176 @default.
- W4387403946 hasConcept C163258240 @default.
- W4387403946 hasConcept C185798385 @default.
- W4387403946 hasConcept C205649164 @default.
- W4387403946 hasConcept C2524010 @default.
- W4387403946 hasConcept C2986056383 @default.
- W4387403946 hasConcept C33923547 @default.
- W4387403946 hasConcept C38349280 @default.
- W4387403946 hasConcept C41008148 @default.
- W4387403946 hasConcept C62520636 @default.
- W4387403946 hasConcept C68781425 @default.
- W4387403946 hasConcept C81917197 @default.
- W4387403946 hasConcept C89227174 @default.
- W4387403946 hasConceptScore W4387403946C108755667 @default.
- W4387403946 hasConceptScore W4387403946C121332964 @default.
- W4387403946 hasConceptScore W4387403946C126255220 @default.