Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387404188> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4387404188 endingPage "117" @default.
- W4387404188 startingPage "107" @default.
- W4387404188 abstract "Multiplex-brightfield immunohistochemistry imaging (MPx) enables quantification of various biomarkers in tissue while retaining morphological and spatial information. One of the critical challenges of MPx is the complexity of visually inspection-based assessment of multiple stain intensities when they are co-localized in a cell. Consequently, it requires digital unmixing methods to separate multiple staining components and remix individual staining elements together with counterstain to become synthetic singleplex images (SPx). Unmixing MPx images becomes even more challenging when more than three biomarkers co-localized. Conventional unmixing methods e.g.,color-deconvolution or Nonnegative-Matrix-Factorization are limited and error prone when separating staining intensities of co-localized biomarkers in membrane or nuclear-subcellular compartments. Here, we exploit advances in generative-adversarial networks (GANs) based on unpaired image-to-image translation (CycleGAN) to generate synthetic SPx from MPx for pathologists to read and score. Three tonsil tissues with a total of 36 wholeslide images, stained with CD3, Bcl2, and CD8 using chromogenic detection, were used for training and evaluating our framework. Adjacent SPx were used to evaluate the visual quality of our synthetic SPx images with the following experiments: 1) performed perceptual studies or “real-vs.-fake” based on Amazon-Mechanical Turk (AMT) with pathologist observers, where results showed synthetic SPx were indistinguishable from real-adjacent SPx; and 2) evaluated whether our synthetic SPx were realistic to be scored for intensity. Results showed similarity scores of 0.96, 0.96, and 0.97 overall intensity for each synthetic SPx, respectively. Our framework provides alternative methods to virtually unmix the stains in order to accurately and efficiently generate synthetic SPx images from MPx tissue slides. This can bring confidence and opportunities for MPx in-vitro diagnostics." @default.
- W4387404188 created "2023-10-07" @default.
- W4387404188 creator A5001330247 @default.
- W4387404188 creator A5004132080 @default.
- W4387404188 creator A5004500249 @default.
- W4387404188 creator A5007486188 @default.
- W4387404188 creator A5022324491 @default.
- W4387404188 creator A5039199226 @default.
- W4387404188 creator A5052585636 @default.
- W4387404188 creator A5064025350 @default.
- W4387404188 date "2023-01-01" @default.
- W4387404188 modified "2023-10-07" @default.
- W4387404188 title "Synthetic Singleplex-Image Generation in Multiplex-Brightfield Immunohistochemistry Digital Pathology Using Deep Generative Models" @default.
- W4387404188 cites W1972940559 @default.
- W4387404188 cites W2615055042 @default.
- W4387404188 cites W2963073614 @default.
- W4387404188 cites W2979411406 @default.
- W4387404188 cites W3017374234 @default.
- W4387404188 cites W3020433126 @default.
- W4387404188 cites W3110137169 @default.
- W4387404188 cites W3175825797 @default.
- W4387404188 cites W4295533116 @default.
- W4387404188 doi "https://doi.org/10.1007/978-3-031-44689-4_11" @default.
- W4387404188 hasPublicationYear "2023" @default.
- W4387404188 type Work @default.
- W4387404188 citedByCount "0" @default.
- W4387404188 crossrefType "book-chapter" @default.
- W4387404188 hasAuthorship W4387404188A5001330247 @default.
- W4387404188 hasAuthorship W4387404188A5004132080 @default.
- W4387404188 hasAuthorship W4387404188A5004500249 @default.
- W4387404188 hasAuthorship W4387404188A5007486188 @default.
- W4387404188 hasAuthorship W4387404188A5022324491 @default.
- W4387404188 hasAuthorship W4387404188A5039199226 @default.
- W4387404188 hasAuthorship W4387404188A5052585636 @default.
- W4387404188 hasAuthorship W4387404188A5064025350 @default.
- W4387404188 hasConcept C11413529 @default.
- W4387404188 hasConcept C153180895 @default.
- W4387404188 hasConcept C154945302 @default.
- W4387404188 hasConcept C174576160 @default.
- W4387404188 hasConcept C2777522853 @default.
- W4387404188 hasConcept C2781188995 @default.
- W4387404188 hasConcept C31972630 @default.
- W4387404188 hasConcept C41008148 @default.
- W4387404188 hasConcept C60644358 @default.
- W4387404188 hasConcept C86803240 @default.
- W4387404188 hasConceptScore W4387404188C11413529 @default.
- W4387404188 hasConceptScore W4387404188C153180895 @default.
- W4387404188 hasConceptScore W4387404188C154945302 @default.
- W4387404188 hasConceptScore W4387404188C174576160 @default.
- W4387404188 hasConceptScore W4387404188C2777522853 @default.
- W4387404188 hasConceptScore W4387404188C2781188995 @default.
- W4387404188 hasConceptScore W4387404188C31972630 @default.
- W4387404188 hasConceptScore W4387404188C41008148 @default.
- W4387404188 hasConceptScore W4387404188C60644358 @default.
- W4387404188 hasConceptScore W4387404188C86803240 @default.
- W4387404188 hasLocation W43874041881 @default.
- W4387404188 hasOpenAccess W4387404188 @default.
- W4387404188 hasPrimaryLocation W43874041881 @default.
- W4387404188 hasRelatedWork W1966302070 @default.
- W4387404188 hasRelatedWork W1986156575 @default.
- W4387404188 hasRelatedWork W2032074591 @default.
- W4387404188 hasRelatedWork W2037261263 @default.
- W4387404188 hasRelatedWork W2052769487 @default.
- W4387404188 hasRelatedWork W3090782779 @default.
- W4387404188 hasRelatedWork W3149087629 @default.
- W4387404188 hasRelatedWork W3193619106 @default.
- W4387404188 hasRelatedWork W4231036715 @default.
- W4387404188 hasRelatedWork W4296701479 @default.
- W4387404188 isParatext "false" @default.
- W4387404188 isRetracted "false" @default.
- W4387404188 workType "book-chapter" @default.