Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387404196> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4387404196 endingPage "85" @default.
- W4387404196 startingPage "75" @default.
- W4387404196 abstract "Acquiring large quantities of data and annotations is effective for developing high-performing deep learning models, but is difficult and expensive to do in the healthcare context. Adding synthetic training data using generative models offers a low-cost method to deal effectively with the data scarcity challenge, and can also address data imbalance and patient privacy issues. In this study, we propose a comprehensive framework that fits seamlessly into model development workflows for medical image analysis. We demonstrate, with datasets of varying size, (i) the benefits of generative models as a data augmentation method; (ii) how adversarial methods can protect patient privacy via data substitution; (iii) novel performance metrics for these use cases by testing models on real holdout data. We show that training with both synthetic and real data outperforms training with real data alone, and that models trained solely with synthetic data approach their real-only counterparts. Code is available at https://github.com/Global-Health-Labs/US-DCGAN ." @default.
- W4387404196 created "2023-10-07" @default.
- W4387404196 creator A5022411638 @default.
- W4387404196 creator A5043283568 @default.
- W4387404196 creator A5046142889 @default.
- W4387404196 creator A5060428505 @default.
- W4387404196 creator A5074205338 @default.
- W4387404196 creator A5075077500 @default.
- W4387404196 creator A5087127737 @default.
- W4387404196 creator A5092525254 @default.
- W4387404196 date "2023-01-01" @default.
- W4387404196 modified "2023-10-09" @default.
- W4387404196 title "How Good Are Synthetic Medical Images? An Empirical Study with Lung Ultrasound" @default.
- W4387404196 cites W2618530766 @default.
- W4387404196 cites W2736462652 @default.
- W4387404196 cites W2737861305 @default.
- W4387404196 cites W2891569179 @default.
- W4387404196 cites W2954253435 @default.
- W4387404196 cites W2963942586 @default.
- W4387404196 cites W2964261464 @default.
- W4387404196 cites W3135344411 @default.
- W4387404196 cites W3189551160 @default.
- W4387404196 cites W3198854536 @default.
- W4387404196 cites W3213829461 @default.
- W4387404196 cites W4366200300 @default.
- W4387404196 cites W4379660179 @default.
- W4387404196 cites W4385801335 @default.
- W4387404196 doi "https://doi.org/10.1007/978-3-031-44689-4_8" @default.
- W4387404196 hasPublicationYear "2023" @default.
- W4387404196 type Work @default.
- W4387404196 citedByCount "0" @default.
- W4387404196 crossrefType "book-chapter" @default.
- W4387404196 hasAuthorship W4387404196A5022411638 @default.
- W4387404196 hasAuthorship W4387404196A5043283568 @default.
- W4387404196 hasAuthorship W4387404196A5046142889 @default.
- W4387404196 hasAuthorship W4387404196A5060428505 @default.
- W4387404196 hasAuthorship W4387404196A5074205338 @default.
- W4387404196 hasAuthorship W4387404196A5075077500 @default.
- W4387404196 hasAuthorship W4387404196A5087127737 @default.
- W4387404196 hasAuthorship W4387404196A5092525254 @default.
- W4387404196 hasConcept C119857082 @default.
- W4387404196 hasConcept C124101348 @default.
- W4387404196 hasConcept C132964779 @default.
- W4387404196 hasConcept C151730666 @default.
- W4387404196 hasConcept C154945302 @default.
- W4387404196 hasConcept C160920958 @default.
- W4387404196 hasConcept C167966045 @default.
- W4387404196 hasConcept C177212765 @default.
- W4387404196 hasConcept C177264268 @default.
- W4387404196 hasConcept C199360897 @default.
- W4387404196 hasConcept C2522767166 @default.
- W4387404196 hasConcept C2776760102 @default.
- W4387404196 hasConcept C2777655017 @default.
- W4387404196 hasConcept C2779343474 @default.
- W4387404196 hasConcept C39890363 @default.
- W4387404196 hasConcept C41008148 @default.
- W4387404196 hasConcept C77088390 @default.
- W4387404196 hasConcept C86803240 @default.
- W4387404196 hasConceptScore W4387404196C119857082 @default.
- W4387404196 hasConceptScore W4387404196C124101348 @default.
- W4387404196 hasConceptScore W4387404196C132964779 @default.
- W4387404196 hasConceptScore W4387404196C151730666 @default.
- W4387404196 hasConceptScore W4387404196C154945302 @default.
- W4387404196 hasConceptScore W4387404196C160920958 @default.
- W4387404196 hasConceptScore W4387404196C167966045 @default.
- W4387404196 hasConceptScore W4387404196C177212765 @default.
- W4387404196 hasConceptScore W4387404196C177264268 @default.
- W4387404196 hasConceptScore W4387404196C199360897 @default.
- W4387404196 hasConceptScore W4387404196C2522767166 @default.
- W4387404196 hasConceptScore W4387404196C2776760102 @default.
- W4387404196 hasConceptScore W4387404196C2777655017 @default.
- W4387404196 hasConceptScore W4387404196C2779343474 @default.
- W4387404196 hasConceptScore W4387404196C39890363 @default.
- W4387404196 hasConceptScore W4387404196C41008148 @default.
- W4387404196 hasConceptScore W4387404196C77088390 @default.
- W4387404196 hasConceptScore W4387404196C86803240 @default.
- W4387404196 hasLocation W43874041961 @default.
- W4387404196 hasOpenAccess W4387404196 @default.
- W4387404196 hasPrimaryLocation W43874041961 @default.
- W4387404196 hasRelatedWork W2280377497 @default.
- W4387404196 hasRelatedWork W2967848559 @default.
- W4387404196 hasRelatedWork W3014948380 @default.
- W4387404196 hasRelatedWork W3174044702 @default.
- W4387404196 hasRelatedWork W4238433571 @default.
- W4387404196 hasRelatedWork W4283803360 @default.
- W4387404196 hasRelatedWork W4316116392 @default.
- W4387404196 hasRelatedWork W4317695495 @default.
- W4387404196 hasRelatedWork W4365211920 @default.
- W4387404196 hasRelatedWork W4380551139 @default.
- W4387404196 isParatext "false" @default.
- W4387404196 isRetracted "false" @default.
- W4387404196 workType "book-chapter" @default.