Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387404938> ?p ?o ?g. }
- W4387404938 abstract "Abstract Background Evidence-based medicine requires synthesis of research through rigorous and time-intensive systematic literature reviews (SLRs), with significant resource expenditure for data extraction from scientific publications. Machine learning may enable the timely completion of SLRs and reduce errors by automating data identification and extraction. Methods We evaluated the use of machine learning to extract data from publications related to SLRs in oncology (SLR 1) and Fabry disease (SLR 2). SLR 1 predominantly contained interventional studies and SLR 2 observational studies. Predefined key terms and data were manually annotated to train and test bidirectional encoder representations from transformers (BERT) and bidirectional long-short-term memory machine learning models. Using human annotation as a reference, we assessed the ability of the models to identify biomedical terms of interest (entities) and their relations. We also pretrained BERT on a corpus of 100,000 open access clinical publications and/or enhanced context-dependent entity classification with a conditional random field (CRF) model. Performance was measured using the F 1 score, a metric that combines precision and recall. We defined successful matches as partial overlap of entities of the same type. Results For entity recognition, the pretrained BERT+CRF model had the best performance, with an F 1 score of 73% in SLR 1 and 70% in SLR 2. Entity types identified with the highest accuracy were metrics for progression-free survival (SLR 1, F 1 score 88%) or for patient age (SLR 2, F 1 score 82%). Treatment arm dosage was identified less successfully (F 1 scores 60% [SLR 1] and 49% [SLR 2]). The best-performing model for relation extraction, pretrained BERT relation classification, exhibited F 1 scores higher than 90% in cases with at least 80 relation examples for a pair of related entity types. Conclusions The performance of BERT is enhanced by pretraining with biomedical literature and by combining with a CRF model. With refinement, machine learning may assist with manual data extraction for SLRs." @default.
- W4387404938 created "2023-10-07" @default.
- W4387404938 creator A5005306517 @default.
- W4387404938 creator A5010124873 @default.
- W4387404938 creator A5019039543 @default.
- W4387404938 creator A5023671370 @default.
- W4387404938 creator A5035532915 @default.
- W4387404938 creator A5093017595 @default.
- W4387404938 date "2023-10-06" @default.
- W4387404938 modified "2023-10-11" @default.
- W4387404938 title "Evaluation of a prototype machine learning tool to semi-automate data extraction for systematic literature reviews" @default.
- W4387404938 cites W166020462 @default.
- W4387404938 cites W2020959315 @default.
- W4387404938 cites W2070552089 @default.
- W4387404938 cites W2142384583 @default.
- W4387404938 cites W2153244834 @default.
- W4387404938 cites W2184378182 @default.
- W4387404938 cites W2475260156 @default.
- W4387404938 cites W2484269232 @default.
- W4387404938 cites W2593758073 @default.
- W4387404938 cites W2755149525 @default.
- W4387404938 cites W2808479155 @default.
- W4387404938 cites W2808847453 @default.
- W4387404938 cites W2811477782 @default.
- W4387404938 cites W2911489562 @default.
- W4387404938 cites W2961191798 @default.
- W4387404938 cites W2969341057 @default.
- W4387404938 cites W2970771982 @default.
- W4387404938 cites W3035321115 @default.
- W4387404938 cites W3168661259 @default.
- W4387404938 cites W4214717426 @default.
- W4387404938 cites W4283079132 @default.
- W4387404938 cites W4367368990 @default.
- W4387404938 doi "https://doi.org/10.1186/s13643-023-02351-w" @default.
- W4387404938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37803451" @default.
- W4387404938 hasPublicationYear "2023" @default.
- W4387404938 type Work @default.
- W4387404938 citedByCount "0" @default.
- W4387404938 crossrefType "journal-article" @default.
- W4387404938 hasAuthorship W4387404938A5005306517 @default.
- W4387404938 hasAuthorship W4387404938A5010124873 @default.
- W4387404938 hasAuthorship W4387404938A5019039543 @default.
- W4387404938 hasAuthorship W4387404938A5023671370 @default.
- W4387404938 hasAuthorship W4387404938A5035532915 @default.
- W4387404938 hasAuthorship W4387404938A5093017595 @default.
- W4387404938 hasBestOaLocation W43874049381 @default.
- W4387404938 hasConcept C119857082 @default.
- W4387404938 hasConcept C148524875 @default.
- W4387404938 hasConcept C151730666 @default.
- W4387404938 hasConcept C152565575 @default.
- W4387404938 hasConcept C154945302 @default.
- W4387404938 hasConcept C162324750 @default.
- W4387404938 hasConcept C176217482 @default.
- W4387404938 hasConcept C17744445 @default.
- W4387404938 hasConcept C189708586 @default.
- W4387404938 hasConcept C199539241 @default.
- W4387404938 hasConcept C204321447 @default.
- W4387404938 hasConcept C21547014 @default.
- W4387404938 hasConcept C23123220 @default.
- W4387404938 hasConcept C2777466982 @default.
- W4387404938 hasConcept C2779343474 @default.
- W4387404938 hasConcept C2779473830 @default.
- W4387404938 hasConcept C41008148 @default.
- W4387404938 hasConcept C71924100 @default.
- W4387404938 hasConcept C86803240 @default.
- W4387404938 hasConceptScore W4387404938C119857082 @default.
- W4387404938 hasConceptScore W4387404938C148524875 @default.
- W4387404938 hasConceptScore W4387404938C151730666 @default.
- W4387404938 hasConceptScore W4387404938C152565575 @default.
- W4387404938 hasConceptScore W4387404938C154945302 @default.
- W4387404938 hasConceptScore W4387404938C162324750 @default.
- W4387404938 hasConceptScore W4387404938C176217482 @default.
- W4387404938 hasConceptScore W4387404938C17744445 @default.
- W4387404938 hasConceptScore W4387404938C189708586 @default.
- W4387404938 hasConceptScore W4387404938C199539241 @default.
- W4387404938 hasConceptScore W4387404938C204321447 @default.
- W4387404938 hasConceptScore W4387404938C21547014 @default.
- W4387404938 hasConceptScore W4387404938C23123220 @default.
- W4387404938 hasConceptScore W4387404938C2777466982 @default.
- W4387404938 hasConceptScore W4387404938C2779343474 @default.
- W4387404938 hasConceptScore W4387404938C2779473830 @default.
- W4387404938 hasConceptScore W4387404938C41008148 @default.
- W4387404938 hasConceptScore W4387404938C71924100 @default.
- W4387404938 hasConceptScore W4387404938C86803240 @default.
- W4387404938 hasFunder F4320333965 @default.
- W4387404938 hasIssue "1" @default.
- W4387404938 hasLocation W43874049381 @default.
- W4387404938 hasLocation W43874049382 @default.
- W4387404938 hasOpenAccess W4387404938 @default.
- W4387404938 hasPrimaryLocation W43874049381 @default.
- W4387404938 hasRelatedWork W2085472103 @default.
- W4387404938 hasRelatedWork W2129543081 @default.
- W4387404938 hasRelatedWork W2167191881 @default.
- W4387404938 hasRelatedWork W2167473079 @default.
- W4387404938 hasRelatedWork W2905074652 @default.
- W4387404938 hasRelatedWork W3085947683 @default.
- W4387404938 hasRelatedWork W3124148945 @default.
- W4387404938 hasRelatedWork W4200065965 @default.
- W4387404938 hasRelatedWork W4286214506 @default.
- W4387404938 hasRelatedWork W4387124215 @default.