Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387406237> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387406237 abstract "Background: Diagnosing patient deterioration and preventing unexpected deaths in the emergency department is a complex task that relies on the expertise and comprehensive understanding of emergency physicians concerning extensive clinical data. Objectives: Our study aimed to predict emergency department mortality and compare different models. Methods: During a one-month period, demographic information and records were collected from 1,000 patients admitted to the emergency department of a selected hospital in Tehran. We rigorously followed The Cross Industry Standard Process for data mining and methodically progressed through its sequential steps. We employed Cat Boost and Random Forest models for prediction purposes. To prevent overfitting, Random Forest feature selection was employed. Expert judgment was utilized to eliminate features with an importance score below 0.0095. To achieve a more thorough and dependable assessment, we implemented a K-fold cross-validation method with a value of 5. Results: The Cat Boost model outperformed Random Forest significantly, showcasing an impressive mean accuracy of 0.94 (standard deviation: 0.03). Ejection fraction, urea (body waste materials), and diabetes had the greatest impact on prediction. Conclusions: This study sheds light on the exceptional accuracy and efficiency of machine learning in predicting emergency department mortality, surpassing the performance of traditional models. Implementing such models can result in significant improvements in early diagnosis and intervention. This, in turn, allows for optimal resource allocation in the emergency department, preventing the excessive consumption of resources and ultimately saving lives while enhancing patient outcomes." @default.
- W4387406237 created "2023-10-07" @default.
- W4387406237 creator A5051124494 @default.
- W4387406237 creator A5078994409 @default.
- W4387406237 date "2023-10-04" @default.
- W4387406237 modified "2023-10-08" @default.
- W4387406237 title "Mortality Prediction in Emergency Department Using Machine Learning Models" @default.
- W4387406237 cites W1986168602 @default.
- W4387406237 cites W2079300508 @default.
- W4387406237 cites W2158698691 @default.
- W4387406237 cites W2176827718 @default.
- W4387406237 cites W2789758093 @default.
- W4387406237 cites W2798122572 @default.
- W4387406237 cites W2921023172 @default.
- W4387406237 cites W2984180898 @default.
- W4387406237 cites W3043290366 @default.
- W4387406237 cites W3108946043 @default.
- W4387406237 cites W3112614053 @default.
- W4387406237 cites W3130255873 @default.
- W4387406237 cites W3131571875 @default.
- W4387406237 cites W3159260083 @default.
- W4387406237 cites W3197153878 @default.
- W4387406237 cites W3210584845 @default.
- W4387406237 cites W4226066893 @default.
- W4387406237 cites W4229025171 @default.
- W4387406237 cites W4245055982 @default.
- W4387406237 cites W4307556206 @default.
- W4387406237 doi "https://doi.org/10.5812/jamm-140442" @default.
- W4387406237 hasPublicationYear "2023" @default.
- W4387406237 type Work @default.
- W4387406237 citedByCount "0" @default.
- W4387406237 crossrefType "journal-article" @default.
- W4387406237 hasAuthorship W4387406237A5051124494 @default.
- W4387406237 hasAuthorship W4387406237A5078994409 @default.
- W4387406237 hasBestOaLocation W43874062371 @default.
- W4387406237 hasConcept C119857082 @default.
- W4387406237 hasConcept C154945302 @default.
- W4387406237 hasConcept C159110408 @default.
- W4387406237 hasConcept C169258074 @default.
- W4387406237 hasConcept C22019652 @default.
- W4387406237 hasConcept C2780724011 @default.
- W4387406237 hasConcept C41008148 @default.
- W4387406237 hasConcept C45804977 @default.
- W4387406237 hasConcept C50644808 @default.
- W4387406237 hasConcept C545542383 @default.
- W4387406237 hasConcept C71924100 @default.
- W4387406237 hasConceptScore W4387406237C119857082 @default.
- W4387406237 hasConceptScore W4387406237C154945302 @default.
- W4387406237 hasConceptScore W4387406237C159110408 @default.
- W4387406237 hasConceptScore W4387406237C169258074 @default.
- W4387406237 hasConceptScore W4387406237C22019652 @default.
- W4387406237 hasConceptScore W4387406237C2780724011 @default.
- W4387406237 hasConceptScore W4387406237C41008148 @default.
- W4387406237 hasConceptScore W4387406237C45804977 @default.
- W4387406237 hasConceptScore W4387406237C50644808 @default.
- W4387406237 hasConceptScore W4387406237C545542383 @default.
- W4387406237 hasConceptScore W4387406237C71924100 @default.
- W4387406237 hasIssue "3" @default.
- W4387406237 hasLocation W43874062371 @default.
- W4387406237 hasOpenAccess W4387406237 @default.
- W4387406237 hasPrimaryLocation W43874062371 @default.
- W4387406237 hasRelatedWork W1574414179 @default.
- W4387406237 hasRelatedWork W1989198041 @default.
- W4387406237 hasRelatedWork W2050305294 @default.
- W4387406237 hasRelatedWork W2625702017 @default.
- W4387406237 hasRelatedWork W2802491896 @default.
- W4387406237 hasRelatedWork W3191198889 @default.
- W4387406237 hasRelatedWork W322167246 @default.
- W4387406237 hasRelatedWork W4226090801 @default.
- W4387406237 hasRelatedWork W4362597605 @default.
- W4387406237 hasRelatedWork W4384345078 @default.
- W4387406237 hasVolume "11" @default.
- W4387406237 isParatext "false" @default.
- W4387406237 isRetracted "false" @default.
- W4387406237 workType "article" @default.