Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387406969> ?p ?o ?g. }
- W4387406969 endingPage "6116" @default.
- W4387406969 startingPage "6089" @default.
- W4387406969 abstract "ABSTRACTLand Use/Land Cover (LULC) classification has become increasingly important in various fields, including ecological and environmental protection, urban planning, and geological disaster monitoring. With the development of high-resolution remote sensing satellite technology, there is a growing focus on achieving precise LULC classification. However, the accuracy of fine-grained LULC classification is challenged by the high intra-class diversity and low inter-class separability inherent in high-resolution remote sensing images. To address this challenge, this paper proposes a novel multi-path feature fusion semantic segmentation model, called MPFFNet, which combines the segmentation results of convolutional neural networks with traditional filtering processes to achieve finer LULC classification. MPFFNet consists of three modules: the Improved Encoder Module (IEM) extracts contextual and spatial detail information through the backbone network, DASPP, and MFEAM; the Improved Decoder Module (IDM) utilizes the Cascade Feature Fusion (CFF) module to effectively merge shallow and deep information; and the Feature Fusion Module (FAM) enables dual-path feature fusion using a convolutional neural network and Gabor Filter. Experimental results on the large-scale classification set and the fine land-cover classification set of the Gaofen Image Dataset (GID) demonstrate the effectiveness of the proposed method, achieving mIoU scores of 81.02% and 77.83%, respectively. These scores outperform U-Net by 7.95% and 3.28%, respectively. Therefore, we believe that our model can deliver superior results in the task of LULC classification.KEYWORDS: Semantic segmentationland use/land coverhigh-resolution remote sensing imagesmulti-path feature fusion AcknowledgementsThe authors are grateful to the editors and reviewers for their valuable suggestions.Disclosure statementNo potential conflict of interest was reported by the author(s).Data Availability statementThe publicly available dataset Gaofen Image Datasets can be found here: https://paperswithcode.com/dataset/gid.Additional informationFundingThis study was funded by National Key R&D Program of China [2022YFB3903604]. The Central Government to Guide Local Scientific and Technological Development [22ZY1QA005]. The National Natural Science Foundation of China [41930101, 41861059, 42161069], Natural Science Foundation of Gansu Province (23JRRA870), and was partially supported by LZJTU EP 201806, Key R&D Project of Gansu Province [21YF11GA008] and Project of Gansu Provincial Department of Transportation [2021-31]." @default.
- W4387406969 created "2023-10-07" @default.
- W4387406969 creator A5017137186 @default.
- W4387406969 creator A5017713277 @default.
- W4387406969 creator A5043307520 @default.
- W4387406969 creator A5079883494 @default.
- W4387406969 creator A5080647183 @default.
- W4387406969 creator A5082726995 @default.
- W4387406969 date "2023-10-02" @default.
- W4387406969 modified "2023-10-08" @default.
- W4387406969 title "MPFFNet: LULC classification model for high-resolution remote sensing images with multi-path feature fusion" @default.
- W4387406969 cites W1994790229 @default.
- W4387406969 cites W2001531180 @default.
- W4387406969 cites W2044558111 @default.
- W4387406969 cites W2056784354 @default.
- W4387406969 cites W2078478672 @default.
- W4387406969 cites W2122282653 @default.
- W4387406969 cites W2308318555 @default.
- W4387406969 cites W2320230300 @default.
- W4387406969 cites W2412782625 @default.
- W4387406969 cites W2745042876 @default.
- W4387406969 cites W2945385604 @default.
- W4387406969 cites W2948901959 @default.
- W4387406969 cites W2963659230 @default.
- W4387406969 cites W2970410620 @default.
- W4387406969 cites W2985990156 @default.
- W4387406969 cites W2987305265 @default.
- W4387406969 cites W2990473467 @default.
- W4387406969 cites W3045553371 @default.
- W4387406969 cites W3046609679 @default.
- W4387406969 cites W3108450508 @default.
- W4387406969 cites W3129544296 @default.
- W4387406969 cites W3162977387 @default.
- W4387406969 cites W3188086824 @default.
- W4387406969 cites W3201485987 @default.
- W4387406969 cites W3211193475 @default.
- W4387406969 cites W3214291416 @default.
- W4387406969 cites W3215916782 @default.
- W4387406969 cites W4200255062 @default.
- W4387406969 cites W4200547174 @default.
- W4387406969 cites W4214556326 @default.
- W4387406969 cites W4286377389 @default.
- W4387406969 cites W4289731322 @default.
- W4387406969 cites W4293660728 @default.
- W4387406969 cites W4307989764 @default.
- W4387406969 cites W4310376514 @default.
- W4387406969 cites W4312955801 @default.
- W4387406969 cites W4317517551 @default.
- W4387406969 cites W4321601957 @default.
- W4387406969 cites W4327956044 @default.
- W4387406969 cites W4352977315 @default.
- W4387406969 cites W4361286299 @default.
- W4387406969 cites W4364361206 @default.
- W4387406969 doi "https://doi.org/10.1080/01431161.2023.2261153" @default.
- W4387406969 hasPublicationYear "2023" @default.
- W4387406969 type Work @default.
- W4387406969 citedByCount "0" @default.
- W4387406969 crossrefType "journal-article" @default.
- W4387406969 hasAuthorship W4387406969A5017137186 @default.
- W4387406969 hasAuthorship W4387406969A5017713277 @default.
- W4387406969 hasAuthorship W4387406969A5043307520 @default.
- W4387406969 hasAuthorship W4387406969A5079883494 @default.
- W4387406969 hasAuthorship W4387406969A5080647183 @default.
- W4387406969 hasAuthorship W4387406969A5082726995 @default.
- W4387406969 hasConcept C115961682 @default.
- W4387406969 hasConcept C124101348 @default.
- W4387406969 hasConcept C127413603 @default.
- W4387406969 hasConcept C138885662 @default.
- W4387406969 hasConcept C147176958 @default.
- W4387406969 hasConcept C153180895 @default.
- W4387406969 hasConcept C154945302 @default.
- W4387406969 hasConcept C205649164 @default.
- W4387406969 hasConcept C2776401178 @default.
- W4387406969 hasConcept C2780648208 @default.
- W4387406969 hasConcept C41008148 @default.
- W4387406969 hasConcept C41895202 @default.
- W4387406969 hasConcept C4792198 @default.
- W4387406969 hasConcept C62649853 @default.
- W4387406969 hasConcept C75294576 @default.
- W4387406969 hasConcept C81363708 @default.
- W4387406969 hasConcept C89600930 @default.
- W4387406969 hasConceptScore W4387406969C115961682 @default.
- W4387406969 hasConceptScore W4387406969C124101348 @default.
- W4387406969 hasConceptScore W4387406969C127413603 @default.
- W4387406969 hasConceptScore W4387406969C138885662 @default.
- W4387406969 hasConceptScore W4387406969C147176958 @default.
- W4387406969 hasConceptScore W4387406969C153180895 @default.
- W4387406969 hasConceptScore W4387406969C154945302 @default.
- W4387406969 hasConceptScore W4387406969C205649164 @default.
- W4387406969 hasConceptScore W4387406969C2776401178 @default.
- W4387406969 hasConceptScore W4387406969C2780648208 @default.
- W4387406969 hasConceptScore W4387406969C41008148 @default.
- W4387406969 hasConceptScore W4387406969C41895202 @default.
- W4387406969 hasConceptScore W4387406969C4792198 @default.
- W4387406969 hasConceptScore W4387406969C62649853 @default.
- W4387406969 hasConceptScore W4387406969C75294576 @default.
- W4387406969 hasConceptScore W4387406969C81363708 @default.
- W4387406969 hasConceptScore W4387406969C89600930 @default.