Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387407923> ?p ?o ?g. }
- W4387407923 endingPage "8277" @default.
- W4387407923 startingPage "8277" @default.
- W4387407923 abstract "Building accurate acoustic subsurface velocity models is essential for successful industrial exploration projects. Traditional inversion methods from field-recorded seismograms struggle in regions with complex geology. While deep learning (DL) presents a promising alternative, its robustness using field data in these complicated regions has not been sufficiently explored. In this study, we present a thorough analysis of DL’s capability to harness labeled seismograms, whether field-recorded or synthetically generated, for accurate velocity model recovery in a challenging region of the Gulf of Mexico. Our evaluation centers on the impact of training data selection and data augmentation techniques on the DL model’s ability to recover velocity profiles. Models trained on field data produced superior results to data obtained using quantitative metrics like Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM), and R2 (R-squared). They also yielded more geologically plausible predictions and sharper geophysical migration images. Conversely, models trained on synthetic data, while less precise, highlighted the potential utility of synthetic training data, especially when labeled field data are scarce. Our work shows that the efficacy of synthetic data-driven models largely depends on bridging the domain gap between training and test data through the use of advanced wave equation solvers and geologic priors. Our results underscore DL’s potential to advance velocity model-building workflows in industrial settings using previously labeled field-recorded seismograms. They also highlight the indispensable role of earth scientists’ domain expertise in curating synthetic data when field data are lacking." @default.
- W4387407923 created "2023-10-07" @default.
- W4387407923 creator A5027534318 @default.
- W4387407923 creator A5061409210 @default.
- W4387407923 creator A5088747662 @default.
- W4387407923 date "2023-10-06" @default.
- W4387407923 modified "2023-10-15" @default.
- W4387407923 title "Learning-Based Seismic Velocity Inversion with Synthetic and Field Data" @default.
- W4387407923 cites W2002939727 @default.
- W4387407923 cites W2009552164 @default.
- W4387407923 cites W2041859986 @default.
- W4387407923 cites W2076211048 @default.
- W4387407923 cites W2083826621 @default.
- W4387407923 cites W2091315108 @default.
- W4387407923 cites W2092205293 @default.
- W4387407923 cites W2100245965 @default.
- W4387407923 cites W2123297057 @default.
- W4387407923 cites W2125419028 @default.
- W4387407923 cites W2133649447 @default.
- W4387407923 cites W2133665775 @default.
- W4387407923 cites W2140092250 @default.
- W4387407923 cites W2169592548 @default.
- W4387407923 cites W2328960123 @default.
- W4387407923 cites W2464708700 @default.
- W4387407923 cites W2520707372 @default.
- W4387407923 cites W2593529559 @default.
- W4387407923 cites W2755404879 @default.
- W4387407923 cites W2776585113 @default.
- W4387407923 cites W2782977076 @default.
- W4387407923 cites W2799265886 @default.
- W4387407923 cites W2805353882 @default.
- W4387407923 cites W2891500008 @default.
- W4387407923 cites W2919115771 @default.
- W4387407923 cites W2958537367 @default.
- W4387407923 cites W2963742597 @default.
- W4387407923 cites W2963775778 @default.
- W4387407923 cites W2979483515 @default.
- W4387407923 cites W2986812080 @default.
- W4387407923 cites W2987357275 @default.
- W4387407923 cites W2996825290 @default.
- W4387407923 cites W3001554227 @default.
- W4387407923 cites W3004375581 @default.
- W4387407923 cites W3021094251 @default.
- W4387407923 cites W3084009773 @default.
- W4387407923 cites W3134256030 @default.
- W4387407923 cites W4236430992 @default.
- W4387407923 cites W4252593548 @default.
- W4387407923 cites W4285197086 @default.
- W4387407923 cites W4291755194 @default.
- W4387407923 cites W4312172270 @default.
- W4387407923 doi "https://doi.org/10.3390/s23198277" @default.
- W4387407923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37837108" @default.
- W4387407923 hasPublicationYear "2023" @default.
- W4387407923 type Work @default.
- W4387407923 citedByCount "0" @default.
- W4387407923 crossrefType "journal-article" @default.
- W4387407923 hasAuthorship W4387407923A5027534318 @default.
- W4387407923 hasAuthorship W4387407923A5061409210 @default.
- W4387407923 hasAuthorship W4387407923A5088747662 @default.
- W4387407923 hasBestOaLocation W43874079231 @default.
- W4387407923 hasConcept C104317684 @default.
- W4387407923 hasConcept C105795698 @default.
- W4387407923 hasConcept C108583219 @default.
- W4387407923 hasConcept C11413529 @default.
- W4387407923 hasConcept C119857082 @default.
- W4387407923 hasConcept C124101348 @default.
- W4387407923 hasConcept C127313418 @default.
- W4387407923 hasConcept C137219930 @default.
- W4387407923 hasConcept C139945424 @default.
- W4387407923 hasConcept C154945302 @default.
- W4387407923 hasConcept C160920958 @default.
- W4387407923 hasConcept C165205528 @default.
- W4387407923 hasConcept C169744125 @default.
- W4387407923 hasConcept C177212765 @default.
- W4387407923 hasConcept C185592680 @default.
- W4387407923 hasConcept C1893757 @default.
- W4387407923 hasConcept C202444582 @default.
- W4387407923 hasConcept C33923547 @default.
- W4387407923 hasConcept C41008148 @default.
- W4387407923 hasConcept C55493867 @default.
- W4387407923 hasConcept C63479239 @default.
- W4387407923 hasConcept C77088390 @default.
- W4387407923 hasConcept C77928131 @default.
- W4387407923 hasConcept C9652623 @default.
- W4387407923 hasConceptScore W4387407923C104317684 @default.
- W4387407923 hasConceptScore W4387407923C105795698 @default.
- W4387407923 hasConceptScore W4387407923C108583219 @default.
- W4387407923 hasConceptScore W4387407923C11413529 @default.
- W4387407923 hasConceptScore W4387407923C119857082 @default.
- W4387407923 hasConceptScore W4387407923C124101348 @default.
- W4387407923 hasConceptScore W4387407923C127313418 @default.
- W4387407923 hasConceptScore W4387407923C137219930 @default.
- W4387407923 hasConceptScore W4387407923C139945424 @default.
- W4387407923 hasConceptScore W4387407923C154945302 @default.
- W4387407923 hasConceptScore W4387407923C160920958 @default.
- W4387407923 hasConceptScore W4387407923C165205528 @default.
- W4387407923 hasConceptScore W4387407923C169744125 @default.
- W4387407923 hasConceptScore W4387407923C177212765 @default.