Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387408024> ?p ?o ?g. }
- W4387408024 endingPage "4844" @default.
- W4387408024 startingPage "4844" @default.
- W4387408024 abstract "With the rapid development of modern military countermeasure technology, deep distinguish hostile radar is essential in electronic warfare. However, traditional radio frequency (RF) feature extraction methods can easily be interfered by signal information and fail due to the lack of research on RF feature extraction techniques for complex situations. Therefore, in this paper, first, the generation mechanism of RF structure information is discussed, and the influence of different signal information introduced by different operating parameters on RF structure feature extraction is analyzed. Then, an autoencoder (AE) network and an autoencoder metric (AEM) network are designed, introducing metric learning ideas, so that the extracted deep RF structure features have good stability and divisibility. Finally, radar emitter structure (RES) inversion is realized using the centroid-matching method. The experimental results demonstrate that this method exhibits good inversion performance under variable operating parameters (modulation type, frequency, bandwidth, input power). RES inversion including unknown operating parameters is realized for the first time, and it is shown that metric learning has the advantage of separability of RF feature extraction, which can provide an idea in emitter and RF feature extraction." @default.
- W4387408024 created "2023-10-07" @default.
- W4387408024 creator A5006464213 @default.
- W4387408024 creator A5036926068 @default.
- W4387408024 creator A5039581753 @default.
- W4387408024 creator A5043049415 @default.
- W4387408024 creator A5064911778 @default.
- W4387408024 date "2023-10-06" @default.
- W4387408024 modified "2023-10-08" @default.
- W4387408024 title "Radar Emitter Structure Inversion Method Based on Metric and Deep Learning" @default.
- W4387408024 cites W16016350 @default.
- W4387408024 cites W1968960382 @default.
- W4387408024 cites W1990895816 @default.
- W4387408024 cites W2000982976 @default.
- W4387408024 cites W2007839889 @default.
- W4387408024 cites W2028628242 @default.
- W4387408024 cites W2030091742 @default.
- W4387408024 cites W2038836370 @default.
- W4387408024 cites W2050752817 @default.
- W4387408024 cites W2101397645 @default.
- W4387408024 cites W2105611532 @default.
- W4387408024 cites W2114925438 @default.
- W4387408024 cites W2138355218 @default.
- W4387408024 cites W2147800946 @default.
- W4387408024 cites W2153816607 @default.
- W4387408024 cites W2162708855 @default.
- W4387408024 cites W2304380770 @default.
- W4387408024 cites W2317978897 @default.
- W4387408024 cites W2335353069 @default.
- W4387408024 cites W2402043120 @default.
- W4387408024 cites W2404637451 @default.
- W4387408024 cites W2492018752 @default.
- W4387408024 cites W2531162019 @default.
- W4387408024 cites W2539622067 @default.
- W4387408024 cites W2624887404 @default.
- W4387408024 cites W2804264990 @default.
- W4387408024 cites W2886145918 @default.
- W4387408024 cites W2891054065 @default.
- W4387408024 cites W2901710482 @default.
- W4387408024 cites W2907778397 @default.
- W4387408024 cites W2914169887 @default.
- W4387408024 cites W2929496932 @default.
- W4387408024 cites W2962788625 @default.
- W4387408024 cites W2969249912 @default.
- W4387408024 cites W2988343071 @default.
- W4387408024 cites W2995058853 @default.
- W4387408024 cites W3017079671 @default.
- W4387408024 cites W3086222839 @default.
- W4387408024 cites W3158840423 @default.
- W4387408024 cites W3211278025 @default.
- W4387408024 cites W3212491030 @default.
- W4387408024 cites W3212853132 @default.
- W4387408024 cites W3214421355 @default.
- W4387408024 cites W4200369057 @default.
- W4387408024 cites W4207032452 @default.
- W4387408024 cites W4214940715 @default.
- W4387408024 cites W4284989669 @default.
- W4387408024 cites W4285247578 @default.
- W4387408024 cites W4312588616 @default.
- W4387408024 doi "https://doi.org/10.3390/rs15194844" @default.
- W4387408024 hasPublicationYear "2023" @default.
- W4387408024 type Work @default.
- W4387408024 citedByCount "0" @default.
- W4387408024 crossrefType "journal-article" @default.
- W4387408024 hasAuthorship W4387408024A5006464213 @default.
- W4387408024 hasAuthorship W4387408024A5036926068 @default.
- W4387408024 hasAuthorship W4387408024A5039581753 @default.
- W4387408024 hasAuthorship W4387408024A5043049415 @default.
- W4387408024 hasAuthorship W4387408024A5064911778 @default.
- W4387408024 hasBestOaLocation W43874080241 @default.
- W4387408024 hasConcept C101738243 @default.
- W4387408024 hasConcept C108583219 @default.
- W4387408024 hasConcept C109007969 @default.
- W4387408024 hasConcept C11413529 @default.
- W4387408024 hasConcept C127313418 @default.
- W4387408024 hasConcept C127413603 @default.
- W4387408024 hasConcept C151730666 @default.
- W4387408024 hasConcept C153180895 @default.
- W4387408024 hasConcept C154945302 @default.
- W4387408024 hasConcept C1893757 @default.
- W4387408024 hasConcept C194257627 @default.
- W4387408024 hasConcept C196054291 @default.
- W4387408024 hasConcept C24326235 @default.
- W4387408024 hasConcept C2776257435 @default.
- W4387408024 hasConcept C41008148 @default.
- W4387408024 hasConcept C46918542 @default.
- W4387408024 hasConcept C52622490 @default.
- W4387408024 hasConcept C554190296 @default.
- W4387408024 hasConcept C74064498 @default.
- W4387408024 hasConcept C76155785 @default.
- W4387408024 hasConceptScore W4387408024C101738243 @default.
- W4387408024 hasConceptScore W4387408024C108583219 @default.
- W4387408024 hasConceptScore W4387408024C109007969 @default.
- W4387408024 hasConceptScore W4387408024C11413529 @default.
- W4387408024 hasConceptScore W4387408024C127313418 @default.
- W4387408024 hasConceptScore W4387408024C127413603 @default.
- W4387408024 hasConceptScore W4387408024C151730666 @default.
- W4387408024 hasConceptScore W4387408024C153180895 @default.