Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387408166> ?p ?o ?g. }
- W4387408166 endingPage "111064" @default.
- W4387408166 startingPage "111064" @default.
- W4387408166 abstract "In recent years, deep learning methods based on brain image have been used for the diagnosis of cognitive impairment-related disorders. With the development of neuroimaging techniques, multi-modality image such as structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) reflect structural and functional information of the brain respectively, and provide more techniques for the diagnosis of cognitive impairment diseases. Combining these complementary image features can lead to more accurate diagnostic assessments compared to using a single modality. Therefore, how to effectively combine multi-modality image features to realize the diagnosis of cognitive impairment disease needs to be further explored. In this work, we propose an end-to-end multimodal 3D CNN framework based on ResNet architecture, which integrates multi-level features obtained under the role of attention mechanisms to better capture subtle differences among brain images, and achieves remarkable diagnostic performance through spatial pyramid pooling strategy and effective fusion of multi-modality features. In this process, we demonstrated that a multimodal framework is more effective by means of non-shared parameters for multi-modality features learning. Moreover, the visualized attention maps show that our model can focus on important brain regions relevant to disease diagnosis. The experimental results demonstrated that our method improved the diagnostic performance in AD diagnosis and MCI conversion prediction by 6.37% and 3.51% compared to the single modality, and it also outperforms some recent state-of-the-art multimodal methods. Especially in AD diagnosis achieved an average accuracy of 94.61%, which provides a more feasible technology for diagnostic assessment of patients with AD." @default.
- W4387408166 created "2023-10-07" @default.
- W4387408166 creator A5014809965 @default.
- W4387408166 creator A5020951225 @default.
- W4387408166 creator A5032149445 @default.
- W4387408166 creator A5039718733 @default.
- W4387408166 creator A5043301109 @default.
- W4387408166 creator A5055189812 @default.
- W4387408166 date "2023-12-01" @default.
- W4387408166 modified "2023-10-15" @default.
- W4387408166 title "An End-to-end Multimodal 3D CNN Framework with Multi-level Features for the Prediction of Mild Cognitive Impairment" @default.
- W4387408166 cites W2078524519 @default.
- W4387408166 cites W2102099319 @default.
- W4387408166 cites W2109255472 @default.
- W4387408166 cites W2113778882 @default.
- W4387408166 cites W2117340355 @default.
- W4387408166 cites W2146525823 @default.
- W4387408166 cites W2147592269 @default.
- W4387408166 cites W2467160851 @default.
- W4387408166 cites W2784313390 @default.
- W4387408166 cites W2795552972 @default.
- W4387408166 cites W2965717703 @default.
- W4387408166 cites W2990581109 @default.
- W4387408166 cites W2996359303 @default.
- W4387408166 cites W3022315685 @default.
- W4387408166 cites W3096905742 @default.
- W4387408166 cites W3120604872 @default.
- W4387408166 cites W3214734349 @default.
- W4387408166 cites W4206906710 @default.
- W4387408166 cites W4225936869 @default.
- W4387408166 cites W4289656235 @default.
- W4387408166 cites W4311442013 @default.
- W4387408166 cites W4323534860 @default.
- W4387408166 cites W4367174198 @default.
- W4387408166 cites W4378697095 @default.
- W4387408166 cites W4380483648 @default.
- W4387408166 doi "https://doi.org/10.1016/j.knosys.2023.111064" @default.
- W4387408166 hasPublicationYear "2023" @default.
- W4387408166 type Work @default.
- W4387408166 citedByCount "0" @default.
- W4387408166 crossrefType "journal-article" @default.
- W4387408166 hasAuthorship W4387408166A5014809965 @default.
- W4387408166 hasAuthorship W4387408166A5020951225 @default.
- W4387408166 hasAuthorship W4387408166A5032149445 @default.
- W4387408166 hasAuthorship W4387408166A5039718733 @default.
- W4387408166 hasAuthorship W4387408166A5043301109 @default.
- W4387408166 hasAuthorship W4387408166A5055189812 @default.
- W4387408166 hasConcept C108583219 @default.
- W4387408166 hasConcept C115961682 @default.
- W4387408166 hasConcept C119857082 @default.
- W4387408166 hasConcept C126838900 @default.
- W4387408166 hasConcept C153180895 @default.
- W4387408166 hasConcept C154945302 @default.
- W4387408166 hasConcept C15744967 @default.
- W4387408166 hasConcept C169760540 @default.
- W4387408166 hasConcept C169900460 @default.
- W4387408166 hasConcept C2775842073 @default.
- W4387408166 hasConcept C2780226545 @default.
- W4387408166 hasConcept C2984915365 @default.
- W4387408166 hasConcept C41008148 @default.
- W4387408166 hasConcept C58693492 @default.
- W4387408166 hasConcept C69744172 @default.
- W4387408166 hasConcept C70437156 @default.
- W4387408166 hasConcept C71924100 @default.
- W4387408166 hasConcept C81363708 @default.
- W4387408166 hasConceptScore W4387408166C108583219 @default.
- W4387408166 hasConceptScore W4387408166C115961682 @default.
- W4387408166 hasConceptScore W4387408166C119857082 @default.
- W4387408166 hasConceptScore W4387408166C126838900 @default.
- W4387408166 hasConceptScore W4387408166C153180895 @default.
- W4387408166 hasConceptScore W4387408166C154945302 @default.
- W4387408166 hasConceptScore W4387408166C15744967 @default.
- W4387408166 hasConceptScore W4387408166C169760540 @default.
- W4387408166 hasConceptScore W4387408166C169900460 @default.
- W4387408166 hasConceptScore W4387408166C2775842073 @default.
- W4387408166 hasConceptScore W4387408166C2780226545 @default.
- W4387408166 hasConceptScore W4387408166C2984915365 @default.
- W4387408166 hasConceptScore W4387408166C41008148 @default.
- W4387408166 hasConceptScore W4387408166C58693492 @default.
- W4387408166 hasConceptScore W4387408166C69744172 @default.
- W4387408166 hasConceptScore W4387408166C70437156 @default.
- W4387408166 hasConceptScore W4387408166C71924100 @default.
- W4387408166 hasConceptScore W4387408166C81363708 @default.
- W4387408166 hasLocation W43874081661 @default.
- W4387408166 hasOpenAccess W4387408166 @default.
- W4387408166 hasPrimaryLocation W43874081661 @default.
- W4387408166 hasRelatedWork W147410782 @default.
- W4387408166 hasRelatedWork W2152352598 @default.
- W4387408166 hasRelatedWork W2626256601 @default.
- W4387408166 hasRelatedWork W2900413183 @default.
- W4387408166 hasRelatedWork W2953234277 @default.
- W4387408166 hasRelatedWork W3022252430 @default.
- W4387408166 hasRelatedWork W3103989898 @default.
- W4387408166 hasRelatedWork W3108539254 @default.
- W4387408166 hasRelatedWork W4287804464 @default.
- W4387408166 hasRelatedWork W803346624 @default.
- W4387408166 hasVolume "281" @default.
- W4387408166 isParatext "false" @default.