Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387408232> ?p ?o ?g. }
- W4387408232 abstract "Abstract Evaluation of researchers’ output is vital for hiring committees and funding bodies, and it is usually measured via their scientific productivity, citations, or a combined metric such as the h-index. Assessing young researchers is more critical because it takes a while to get citations and increment of h-index. Hence, predicting the h-index can help to discover the researchers’ scientific impact. In addition, identifying the influential factors to predict the scientific impact is helpful for researchers and their organizations seeking solutions to improve it. This study investigates the effect of the author, paper/venue-specific features on the future h-index. For this purpose, we used a machine learning approach to predict the h-index and feature analysis techniques to advance the understanding of feature impact. Utilizing the bibliometric data in Scopus, we defined and extracted two main groups of features. The first relates to prior scientific impact, and we name it ‘prior impact-based features’ and includes the number of publications, received citations, and h-index. The second group is ‘non-prior impact-based features’ and contains the features related to author, co-authorship, paper, and venue characteristics. We explored their importance in predicting researchers’ h-index in three career phases. Also, we examined the temporal dimension of predicting performance for different feature categories to find out which features are more reliable for long- and short-term prediction. We referred to the gender of the authors to examine the role of this author’s characteristics in the prediction task. Our findings showed that gender has a very slight effect in predicting the h-index. Although the results demonstrate better performance for the models containing prior impact-based features for all researchers’ groups in the near future, we found that non-prior impact-based features are more robust predictors for younger scholars in the long term. Also, prior impact-based features lose their power to predict more than other features in the long term." @default.
- W4387408232 created "2023-10-07" @default.
- W4387408232 creator A5033632230 @default.
- W4387408232 creator A5070728314 @default.
- W4387408232 creator A5074683962 @default.
- W4387408232 date "2023-10-06" @default.
- W4387408232 modified "2023-10-08" @default.
- W4387408232 title "Investigating the contribution of author- and publication-specific features to scholars’ h-index prediction" @default.
- W4387408232 cites W1960480397 @default.
- W4387408232 cites W1966661928 @default.
- W4387408232 cites W1975795075 @default.
- W4387408232 cites W1987570886 @default.
- W4387408232 cites W2005706022 @default.
- W4387408232 cites W2024296872 @default.
- W4387408232 cites W2070870127 @default.
- W4387408232 cites W2090540060 @default.
- W4387408232 cites W2096119600 @default.
- W4387408232 cites W2111836958 @default.
- W4387408232 cites W2111919025 @default.
- W4387408232 cites W2126326820 @default.
- W4387408232 cites W2128438887 @default.
- W4387408232 cites W2132040345 @default.
- W4387408232 cites W2151568674 @default.
- W4387408232 cites W2418922443 @default.
- W4387408232 cites W2511661767 @default.
- W4387408232 cites W2588384268 @default.
- W4387408232 cites W2775574671 @default.
- W4387408232 cites W2793131191 @default.
- W4387408232 cites W2806306347 @default.
- W4387408232 cites W2807919512 @default.
- W4387408232 cites W2915612428 @default.
- W4387408232 cites W2941365238 @default.
- W4387408232 cites W2950096371 @default.
- W4387408232 cites W2951329329 @default.
- W4387408232 cites W2962744526 @default.
- W4387408232 cites W3023428950 @default.
- W4387408232 cites W3027018408 @default.
- W4387408232 cites W3046583490 @default.
- W4387408232 cites W3099632057 @default.
- W4387408232 cites W3102109132 @default.
- W4387408232 cites W3102476541 @default.
- W4387408232 cites W3103571870 @default.
- W4387408232 cites W3107466325 @default.
- W4387408232 cites W3115804642 @default.
- W4387408232 cites W3130592667 @default.
- W4387408232 cites W3152922902 @default.
- W4387408232 cites W3159964116 @default.
- W4387408232 cites W3174975695 @default.
- W4387408232 cites W3184304603 @default.
- W4387408232 cites W3207497279 @default.
- W4387408232 cites W4220655178 @default.
- W4387408232 cites W4302406680 @default.
- W4387408232 cites W4309042829 @default.
- W4387408232 cites W4311306030 @default.
- W4387408232 cites W4312098068 @default.
- W4387408232 cites W4360611303 @default.
- W4387408232 cites W45649963 @default.
- W4387408232 doi "https://doi.org/10.1140/epjds/s13688-023-00421-6" @default.
- W4387408232 hasPublicationYear "2023" @default.
- W4387408232 type Work @default.
- W4387408232 citedByCount "0" @default.
- W4387408232 crossrefType "journal-article" @default.
- W4387408232 hasAuthorship W4387408232A5033632230 @default.
- W4387408232 hasAuthorship W4387408232A5070728314 @default.
- W4387408232 hasAuthorship W4387408232A5074683962 @default.
- W4387408232 hasBestOaLocation W43874082321 @default.
- W4387408232 hasConcept C124101348 @default.
- W4387408232 hasConcept C127413603 @default.
- W4387408232 hasConcept C136764020 @default.
- W4387408232 hasConcept C138885662 @default.
- W4387408232 hasConcept C139719470 @default.
- W4387408232 hasConcept C154945302 @default.
- W4387408232 hasConcept C162324750 @default.
- W4387408232 hasConcept C176217482 @default.
- W4387408232 hasConcept C17744445 @default.
- W4387408232 hasConcept C178315738 @default.
- W4387408232 hasConcept C199539241 @default.
- W4387408232 hasConcept C201995342 @default.
- W4387408232 hasConcept C202444582 @default.
- W4387408232 hasConcept C204983608 @default.
- W4387408232 hasConcept C21547014 @default.
- W4387408232 hasConcept C23123220 @default.
- W4387408232 hasConcept C2522767166 @default.
- W4387408232 hasConcept C2776401178 @default.
- W4387408232 hasConcept C2777382242 @default.
- W4387408232 hasConcept C2779473830 @default.
- W4387408232 hasConcept C2780451532 @default.
- W4387408232 hasConcept C33676613 @default.
- W4387408232 hasConcept C33923547 @default.
- W4387408232 hasConcept C41008148 @default.
- W4387408232 hasConcept C41895202 @default.
- W4387408232 hasConcept C83867959 @default.
- W4387408232 hasConceptScore W4387408232C124101348 @default.
- W4387408232 hasConceptScore W4387408232C127413603 @default.
- W4387408232 hasConceptScore W4387408232C136764020 @default.
- W4387408232 hasConceptScore W4387408232C138885662 @default.
- W4387408232 hasConceptScore W4387408232C139719470 @default.
- W4387408232 hasConceptScore W4387408232C154945302 @default.
- W4387408232 hasConceptScore W4387408232C162324750 @default.
- W4387408232 hasConceptScore W4387408232C176217482 @default.