Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387408512> ?p ?o ?g. }
- W4387408512 endingPage "021" @default.
- W4387408512 startingPage "021" @default.
- W4387408512 abstract "Abstract We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package ( pip install gpry ) and can also be found at https://github.com/jonaselgammal/GPry ." @default.
- W4387408512 created "2023-10-07" @default.
- W4387408512 creator A5006603438 @default.
- W4387408512 creator A5010482077 @default.
- W4387408512 creator A5076684918 @default.
- W4387408512 creator A5088663050 @default.
- W4387408512 date "2023-10-01" @default.
- W4387408512 modified "2023-10-08" @default.
- W4387408512 title "Fast and robust Bayesian inference using Gaussian processes with GPry" @default.
- W4387408512 cites W135104305 @default.
- W4387408512 cites W1836665496 @default.
- W4387408512 cites W1839094326 @default.
- W4387408512 cites W1886713477 @default.
- W4387408512 cites W1965555277 @default.
- W4387408512 cites W1976396954 @default.
- W4387408512 cites W1978079086 @default.
- W4387408512 cites W1979815131 @default.
- W4387408512 cites W2005126631 @default.
- W4387408512 cites W2031854222 @default.
- W4387408512 cites W2062191374 @default.
- W4387408512 cites W2064737931 @default.
- W4387408512 cites W2130038292 @default.
- W4387408512 cites W2153208487 @default.
- W4387408512 cites W2158514656 @default.
- W4387408512 cites W2602518026 @default.
- W4387408512 cites W2607418782 @default.
- W4387408512 cites W2904703261 @default.
- W4387408512 cites W2931388211 @default.
- W4387408512 cites W2956944985 @default.
- W4387408512 cites W2959696098 @default.
- W4387408512 cites W2979416954 @default.
- W4387408512 cites W3025522338 @default.
- W4387408512 cites W3031275541 @default.
- W4387408512 cites W3031514878 @default.
- W4387408512 cites W3047856369 @default.
- W4387408512 cites W3081940888 @default.
- W4387408512 cites W3084167869 @default.
- W4387408512 cites W3084280436 @default.
- W4387408512 cites W3085816351 @default.
- W4387408512 cites W3091962013 @default.
- W4387408512 cites W3099985710 @default.
- W4387408512 cites W3101487221 @default.
- W4387408512 cites W3102014803 @default.
- W4387408512 cites W3102889897 @default.
- W4387408512 cites W3103282112 @default.
- W4387408512 cites W3103406638 @default.
- W4387408512 cites W3104188978 @default.
- W4387408512 cites W3105240409 @default.
- W4387408512 cites W3108276424 @default.
- W4387408512 cites W3122921871 @default.
- W4387408512 cites W3126329349 @default.
- W4387408512 cites W3134964497 @default.
- W4387408512 cites W3157512668 @default.
- W4387408512 cites W3164621862 @default.
- W4387408512 cites W3180283187 @default.
- W4387408512 cites W3208084559 @default.
- W4387408512 cites W4206368607 @default.
- W4387408512 cites W4206429852 @default.
- W4387408512 cites W4210561195 @default.
- W4387408512 cites W4221153697 @default.
- W4387408512 cites W4231491688 @default.
- W4387408512 cites W4239510810 @default.
- W4387408512 cites W4286493660 @default.
- W4387408512 cites W4287239796 @default.
- W4387408512 cites W4296816715 @default.
- W4387408512 cites W4309127759 @default.
- W4387408512 cites W4309148644 @default.
- W4387408512 cites W4309811201 @default.
- W4387408512 cites W4319871631 @default.
- W4387408512 cites W4360855677 @default.
- W4387408512 cites W4376983307 @default.
- W4387408512 cites W4381325504 @default.
- W4387408512 cites W61667912 @default.
- W4387408512 doi "https://doi.org/10.1088/1475-7516/2023/10/021" @default.
- W4387408512 hasPublicationYear "2023" @default.
- W4387408512 type Work @default.
- W4387408512 citedByCount "0" @default.
- W4387408512 crossrefType "journal-article" @default.
- W4387408512 hasAuthorship W4387408512A5006603438 @default.
- W4387408512 hasAuthorship W4387408512A5010482077 @default.
- W4387408512 hasAuthorship W4387408512A5076684918 @default.
- W4387408512 hasAuthorship W4387408512A5088663050 @default.
- W4387408512 hasBestOaLocation W43874085121 @default.
- W4387408512 hasConcept C105795698 @default.
- W4387408512 hasConcept C107673813 @default.
- W4387408512 hasConcept C111350023 @default.
- W4387408512 hasConcept C111919701 @default.
- W4387408512 hasConcept C11413529 @default.
- W4387408512 hasConcept C119857082 @default.
- W4387408512 hasConcept C121332964 @default.
- W4387408512 hasConcept C13153151 @default.
- W4387408512 hasConcept C154945302 @default.
- W4387408512 hasConcept C160234255 @default.
- W4387408512 hasConcept C163716315 @default.
- W4387408512 hasConcept C19499675 @default.
- W4387408512 hasConcept C2776214188 @default.
- W4387408512 hasConcept C33923547 @default.
- W4387408512 hasConcept C41008148 @default.