Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387408803> ?p ?o ?g. }
- W4387408803 endingPage "121893" @default.
- W4387408803 startingPage "121893" @default.
- W4387408803 abstract "Structure learning based feature selection has attracted increasing attention for selecting these features which can preserve the learned structures. However, existing methods fail to effectively explore the heterogeneous and homogeneous information from multiple views, which leads to the suboptimal results. To solve this problem, we propose Structure Learning with Consensus Label Information for Multi-View Feature Selection (SCMvFS). Noting the heterogeneity of views, the graph of each view should be a perturbation of the intrinsic graph yet the clustering structure are shared across views. In light of this, we generate a unique clustering indicator through the spectral analysis of multiple Laplacian graphs for the structure learning based feature selection. Therefore, SCMvFS considers both the graph heterogeneity and indicator consistency to effectively explore the heterogeneous and homogeneous information for facilitating the feature selection task. Further, we carefully design an efficient algorithm to solve the resulting optimization problem. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on seven benchmark datasets with respect to two indicators. In particular, SCMvFS achieves an ACC of 61.87 (55.94) on the Outdoor Scene (Yale) dataset, which is an up to 43% (15%) performance improvement compared with the latest structure learning based method TLR. The code and datasets are available at https://github.com/HdTgon/2023-ESWA-SCMvFS." @default.
- W4387408803 created "2023-10-07" @default.
- W4387408803 creator A5025021691 @default.
- W4387408803 creator A5064273309 @default.
- W4387408803 date "2024-03-01" @default.
- W4387408803 modified "2023-10-15" @default.
- W4387408803 title "Structure learning with consensus label information for multi-view unsupervised feature selection" @default.
- W4387408803 cites W1566135517 @default.
- W4387408803 cites W1965888682 @default.
- W4387408803 cites W1984776140 @default.
- W4387408803 cites W2053186076 @default.
- W4387408803 cites W2073161435 @default.
- W4387408803 cites W2083666679 @default.
- W4387408803 cites W2128873747 @default.
- W4387408803 cites W2151103935 @default.
- W4387408803 cites W2161969291 @default.
- W4387408803 cites W2163352848 @default.
- W4387408803 cites W2199534117 @default.
- W4387408803 cites W2209159500 @default.
- W4387408803 cites W2422268042 @default.
- W4387408803 cites W2428757121 @default.
- W4387408803 cites W2577472518 @default.
- W4387408803 cites W2583916359 @default.
- W4387408803 cites W2595272553 @default.
- W4387408803 cites W2737186053 @default.
- W4387408803 cites W2741998188 @default.
- W4387408803 cites W2754732418 @default.
- W4387408803 cites W2765158981 @default.
- W4387408803 cites W2769509511 @default.
- W4387408803 cites W2774952377 @default.
- W4387408803 cites W2781829441 @default.
- W4387408803 cites W2787885212 @default.
- W4387408803 cites W2808219330 @default.
- W4387408803 cites W2833504722 @default.
- W4387408803 cites W2862963283 @default.
- W4387408803 cites W2900778510 @default.
- W4387408803 cites W2904125861 @default.
- W4387408803 cites W2943264779 @default.
- W4387408803 cites W2981206386 @default.
- W4387408803 cites W2998358581 @default.
- W4387408803 cites W3000308450 @default.
- W4387408803 cites W3000565840 @default.
- W4387408803 cites W3004244740 @default.
- W4387408803 cites W3082753413 @default.
- W4387408803 cites W3087373232 @default.
- W4387408803 cites W3095652843 @default.
- W4387408803 cites W3114137134 @default.
- W4387408803 cites W3118054267 @default.
- W4387408803 cites W3120689699 @default.
- W4387408803 cites W3128355817 @default.
- W4387408803 cites W3184333369 @default.
- W4387408803 cites W3184340199 @default.
- W4387408803 cites W3197227262 @default.
- W4387408803 cites W3197896619 @default.
- W4387408803 cites W3208521902 @default.
- W4387408803 cites W4213025362 @default.
- W4387408803 cites W4220994103 @default.
- W4387408803 cites W4283797473 @default.
- W4387408803 cites W4286566961 @default.
- W4387408803 cites W4308889875 @default.
- W4387408803 cites W4313537271 @default.
- W4387408803 cites W4319833529 @default.
- W4387408803 cites W4362587872 @default.
- W4387408803 cites W4366526205 @default.
- W4387408803 cites W4366778915 @default.
- W4387408803 cites W4367397302 @default.
- W4387408803 cites W4386233471 @default.
- W4387408803 cites W45551751 @default.
- W4387408803 doi "https://doi.org/10.1016/j.eswa.2023.121893" @default.
- W4387408803 hasPublicationYear "2024" @default.
- W4387408803 type Work @default.
- W4387408803 citedByCount "0" @default.
- W4387408803 crossrefType "journal-article" @default.
- W4387408803 hasAuthorship W4387408803A5025021691 @default.
- W4387408803 hasAuthorship W4387408803A5064273309 @default.
- W4387408803 hasConcept C105611402 @default.
- W4387408803 hasConcept C114614502 @default.
- W4387408803 hasConcept C119857082 @default.
- W4387408803 hasConcept C124101348 @default.
- W4387408803 hasConcept C132525143 @default.
- W4387408803 hasConcept C13280743 @default.
- W4387408803 hasConcept C138885662 @default.
- W4387408803 hasConcept C148483581 @default.
- W4387408803 hasConcept C154945302 @default.
- W4387408803 hasConcept C185798385 @default.
- W4387408803 hasConcept C205649164 @default.
- W4387408803 hasConcept C2776401178 @default.
- W4387408803 hasConcept C33923547 @default.
- W4387408803 hasConcept C41008148 @default.
- W4387408803 hasConcept C41895202 @default.
- W4387408803 hasConcept C59404180 @default.
- W4387408803 hasConcept C66882249 @default.
- W4387408803 hasConcept C73555534 @default.
- W4387408803 hasConcept C80444323 @default.
- W4387408803 hasConcept C81917197 @default.
- W4387408803 hasConceptScore W4387408803C105611402 @default.
- W4387408803 hasConceptScore W4387408803C114614502 @default.
- W4387408803 hasConceptScore W4387408803C119857082 @default.