Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387408992> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4387408992 endingPage "121897" @default.
- W4387408992 startingPage "121897" @default.
- W4387408992 abstract "Deep reinforcement learning (DRL) has made remarkable strides in empowering computational models to tackle intricate decision-making tasks. In quantitative trading, DRL trading agents have emerged as a means to optimize decisions across diverse market scenarios, culminating in developing profitable trading strategies by assimilating knowledge from past experiences. This study introduces an innovative trading system centered around the Deep Q-Network (DQN) algorithm called Extended Trading DQN (ETDQN). ETDQN stands out by its ability to adapt its learning process to trade effectively across varying market conditions, with feedback received exclusively upon trade liquidation. This contrasts with models that inundate agents with continuous feedback signals. ETDQN leverages distributional learning and several other independent extensions to enhance its DRL capabilities, streamlining its decision-making process. The model accomplishes this by prioritizing experiences encompassing diverse sub-objectives, facilitating the accumulation of maximum profit while obviating the need for intricate reward fine-tuning. Through extensive training on three distinct financial time series signals, ETDQN demonstrates its proficiency in identifying trading opportunities, particularly during periods of heightened price volatility. Notably, the model exhibits a more assertive approach towards managing annual returns volatility compared to the conventional DQN model, outperforming it by a factor of 1.46 and 7.13 concerning average daily cumulative returns, as evidenced in the historical data of Western Digital Corporation and the Cosmos cryptocurrency, respectively." @default.
- W4387408992 created "2023-10-07" @default.
- W4387408992 creator A5010508989 @default.
- W4387408992 creator A5021194696 @default.
- W4387408992 creator A5043053491 @default.
- W4387408992 creator A5044574416 @default.
- W4387408992 date "2024-03-01" @default.
- W4387408992 modified "2023-10-18" @default.
- W4387408992 title "Deep reinforcement learning applied to a sparse-reward trading environment with intraday data" @default.
- W4387408992 cites W2076337359 @default.
- W4387408992 cites W2124493593 @default.
- W4387408992 cites W2145339207 @default.
- W4387408992 cites W2150220236 @default.
- W4387408992 cites W2153580489 @default.
- W4387408992 cites W2786348607 @default.
- W4387408992 cites W2963467914 @default.
- W4387408992 cites W2966021938 @default.
- W4387408992 cites W2997396626 @default.
- W4387408992 cites W3010647961 @default.
- W4387408992 cites W3035574064 @default.
- W4387408992 cites W3083252136 @default.
- W4387408992 cites W3089914711 @default.
- W4387408992 cites W3126577088 @default.
- W4387408992 cites W3143493396 @default.
- W4387408992 cites W3213785567 @default.
- W4387408992 cites W4212896298 @default.
- W4387408992 cites W4221076619 @default.
- W4387408992 cites W4285011703 @default.
- W4387408992 cites W4316035578 @default.
- W4387408992 cites W4324361235 @default.
- W4387408992 cites W4352981360 @default.
- W4387408992 cites W4380927145 @default.
- W4387408992 doi "https://doi.org/10.1016/j.eswa.2023.121897" @default.
- W4387408992 hasPublicationYear "2024" @default.
- W4387408992 type Work @default.
- W4387408992 citedByCount "0" @default.
- W4387408992 crossrefType "journal-article" @default.
- W4387408992 hasAuthorship W4387408992A5010508989 @default.
- W4387408992 hasAuthorship W4387408992A5021194696 @default.
- W4387408992 hasAuthorship W4387408992A5043053491 @default.
- W4387408992 hasAuthorship W4387408992A5044574416 @default.
- W4387408992 hasConcept C10138342 @default.
- W4387408992 hasConcept C106159729 @default.
- W4387408992 hasConcept C111919701 @default.
- W4387408992 hasConcept C119857082 @default.
- W4387408992 hasConcept C127413603 @default.
- W4387408992 hasConcept C131562839 @default.
- W4387408992 hasConcept C149782125 @default.
- W4387408992 hasConcept C154945302 @default.
- W4387408992 hasConcept C162324750 @default.
- W4387408992 hasConcept C175444787 @default.
- W4387408992 hasConcept C180706569 @default.
- W4387408992 hasConcept C181622380 @default.
- W4387408992 hasConcept C19244329 @default.
- W4387408992 hasConcept C38652104 @default.
- W4387408992 hasConcept C41008148 @default.
- W4387408992 hasConcept C42475967 @default.
- W4387408992 hasConcept C78508483 @default.
- W4387408992 hasConcept C91602232 @default.
- W4387408992 hasConcept C97541855 @default.
- W4387408992 hasConcept C98045186 @default.
- W4387408992 hasConceptScore W4387408992C10138342 @default.
- W4387408992 hasConceptScore W4387408992C106159729 @default.
- W4387408992 hasConceptScore W4387408992C111919701 @default.
- W4387408992 hasConceptScore W4387408992C119857082 @default.
- W4387408992 hasConceptScore W4387408992C127413603 @default.
- W4387408992 hasConceptScore W4387408992C131562839 @default.
- W4387408992 hasConceptScore W4387408992C149782125 @default.
- W4387408992 hasConceptScore W4387408992C154945302 @default.
- W4387408992 hasConceptScore W4387408992C162324750 @default.
- W4387408992 hasConceptScore W4387408992C175444787 @default.
- W4387408992 hasConceptScore W4387408992C180706569 @default.
- W4387408992 hasConceptScore W4387408992C181622380 @default.
- W4387408992 hasConceptScore W4387408992C19244329 @default.
- W4387408992 hasConceptScore W4387408992C38652104 @default.
- W4387408992 hasConceptScore W4387408992C41008148 @default.
- W4387408992 hasConceptScore W4387408992C42475967 @default.
- W4387408992 hasConceptScore W4387408992C78508483 @default.
- W4387408992 hasConceptScore W4387408992C91602232 @default.
- W4387408992 hasConceptScore W4387408992C97541855 @default.
- W4387408992 hasConceptScore W4387408992C98045186 @default.
- W4387408992 hasLocation W43874089921 @default.
- W4387408992 hasOpenAccess W4387408992 @default.
- W4387408992 hasPrimaryLocation W43874089921 @default.
- W4387408992 hasRelatedWork W2503079957 @default.
- W4387408992 hasRelatedWork W2523594540 @default.
- W4387408992 hasRelatedWork W3213042429 @default.
- W4387408992 hasRelatedWork W4206190611 @default.
- W4387408992 hasRelatedWork W4231485458 @default.
- W4387408992 hasRelatedWork W4313491999 @default.
- W4387408992 hasRelatedWork W4323268808 @default.
- W4387408992 hasRelatedWork W4385489135 @default.
- W4387408992 hasRelatedWork W4386181907 @default.
- W4387408992 hasRelatedWork W4386992034 @default.
- W4387408992 hasVolume "238" @default.
- W4387408992 isParatext "false" @default.
- W4387408992 isRetracted "false" @default.
- W4387408992 workType "article" @default.