Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387410100> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4387410100 abstract "Abstract Purpose: Accurate differentiation between glioma recurrence and radiation necrosis is crucial for the management of patients suspected of glioma recurrence after radiation therapy. This study aims to develop a deep learning methodology for automated discrimination of glioma recurrence and radiation necrosis using routine magnetic resonance imaging (MRI) scans. Method: We investigated 234 patients who underwent radiotherapy following glioma resection and presented with suspected recurrent lesions during follow-up MRI examinations retrospectively. Routine 3D-MRI scans, including T1, T2, and T1ce sequences, were obtained for each patient. Out of the analyzed cases, 192 (82.1%) were pathologically confirmed as glioma recurrence, while 46 (16.1%) were diagnosed as radiation necrosis. Different Convolutional Neural Network (CNN) models were utilized to learn radiological features indicative of gliomas and necrosis from the MRI scans. Performance evaluation metrics including sensitivity, specificity, accuracy, and area under the curve (AUC), were employed to assess the models’ performance. Result: Among the evaluated CNN models, ResNet10 exhibited the highest sensitivity of 0.778, specificity of 0.939, accuracy of 0.914, and an AUC of 0.828. Additionally, the MresNet model achieved the highest specificity of 0.980 but had a lower sensitivity of 0.556. Another evaluated CNN model, Vgg16, displayed a sensitivity of 0.556, specificity of 0.939, accuracy of 0.879, and an AUC of 0.702. Conclusion: The proposed ResNet10 CNN model shows promising performance on routine MRI scans, making it highly applicable in clinical settings. These findings contribute to improving the diagnostic accuracy in distinguishing between glioma recurrence and radiation necrosis based on routine MRI." @default.
- W4387410100 created "2023-10-07" @default.
- W4387410100 creator A5011241874 @default.
- W4387410100 creator A5030090378 @default.
- W4387410100 creator A5047931252 @default.
- W4387410100 creator A5052721757 @default.
- W4387410100 creator A5059618632 @default.
- W4387410100 creator A5063512679 @default.
- W4387410100 creator A5067749727 @default.
- W4387410100 creator A5070916727 @default.
- W4387410100 creator A5073423320 @default.
- W4387410100 creator A5074523592 @default.
- W4387410100 date "2023-10-06" @default.
- W4387410100 modified "2023-10-08" @default.
- W4387410100 title "Application of Deep Learning on MRI for Discriminating Glioma Recurrence from Radiation Necrosis: Algorithm Development and Validation" @default.
- W4387410100 cites W2015042035 @default.
- W4387410100 cites W2038869053 @default.
- W4387410100 cites W2048919807 @default.
- W4387410100 cites W2052527703 @default.
- W4387410100 cites W2075496679 @default.
- W4387410100 cites W2087978562 @default.
- W4387410100 cites W2096287682 @default.
- W4387410100 cites W2100123312 @default.
- W4387410100 cites W2108090165 @default.
- W4387410100 cites W2135348205 @default.
- W4387410100 cites W2135465849 @default.
- W4387410100 cites W2148216778 @default.
- W4387410100 cites W2152062904 @default.
- W4387410100 cites W2224084268 @default.
- W4387410100 cites W2520481615 @default.
- W4387410100 cites W2620515654 @default.
- W4387410100 cites W2730667638 @default.
- W4387410100 cites W2770305510 @default.
- W4387410100 cites W2883317543 @default.
- W4387410100 cites W2902801574 @default.
- W4387410100 cites W2990321943 @default.
- W4387410100 cites W3027857290 @default.
- W4387410100 cites W3085581207 @default.
- W4387410100 cites W3162235259 @default.
- W4387410100 cites W3174246647 @default.
- W4387410100 cites W4220775168 @default.
- W4387410100 cites W4233073121 @default.
- W4387410100 doi "https://doi.org/10.21203/rs.3.rs-3393301/v1" @default.
- W4387410100 hasPublicationYear "2023" @default.
- W4387410100 type Work @default.
- W4387410100 citedByCount "0" @default.
- W4387410100 crossrefType "posted-content" @default.
- W4387410100 hasAuthorship W4387410100A5011241874 @default.
- W4387410100 hasAuthorship W4387410100A5030090378 @default.
- W4387410100 hasAuthorship W4387410100A5047931252 @default.
- W4387410100 hasAuthorship W4387410100A5052721757 @default.
- W4387410100 hasAuthorship W4387410100A5059618632 @default.
- W4387410100 hasAuthorship W4387410100A5063512679 @default.
- W4387410100 hasAuthorship W4387410100A5067749727 @default.
- W4387410100 hasAuthorship W4387410100A5070916727 @default.
- W4387410100 hasAuthorship W4387410100A5073423320 @default.
- W4387410100 hasAuthorship W4387410100A5074523592 @default.
- W4387410100 hasBestOaLocation W43874101001 @default.
- W4387410100 hasConcept C11413529 @default.
- W4387410100 hasConcept C126838900 @default.
- W4387410100 hasConcept C142724271 @default.
- W4387410100 hasConcept C143409427 @default.
- W4387410100 hasConcept C154945302 @default.
- W4387410100 hasConcept C2778227246 @default.
- W4387410100 hasConcept C2989005 @default.
- W4387410100 hasConcept C41008148 @default.
- W4387410100 hasConcept C502942594 @default.
- W4387410100 hasConcept C503630168 @default.
- W4387410100 hasConcept C509974204 @default.
- W4387410100 hasConcept C71924100 @default.
- W4387410100 hasConcept C81363708 @default.
- W4387410100 hasConceptScore W4387410100C11413529 @default.
- W4387410100 hasConceptScore W4387410100C126838900 @default.
- W4387410100 hasConceptScore W4387410100C142724271 @default.
- W4387410100 hasConceptScore W4387410100C143409427 @default.
- W4387410100 hasConceptScore W4387410100C154945302 @default.
- W4387410100 hasConceptScore W4387410100C2778227246 @default.
- W4387410100 hasConceptScore W4387410100C2989005 @default.
- W4387410100 hasConceptScore W4387410100C41008148 @default.
- W4387410100 hasConceptScore W4387410100C502942594 @default.
- W4387410100 hasConceptScore W4387410100C503630168 @default.
- W4387410100 hasConceptScore W4387410100C509974204 @default.
- W4387410100 hasConceptScore W4387410100C71924100 @default.
- W4387410100 hasConceptScore W4387410100C81363708 @default.
- W4387410100 hasLocation W43874101001 @default.
- W4387410100 hasOpenAccess W4387410100 @default.
- W4387410100 hasPrimaryLocation W43874101001 @default.
- W4387410100 hasRelatedWork W2234322404 @default.
- W4387410100 hasRelatedWork W2362999506 @default.
- W4387410100 hasRelatedWork W2887359201 @default.
- W4387410100 hasRelatedWork W3208778134 @default.
- W4387410100 hasRelatedWork W4205170363 @default.
- W4387410100 hasRelatedWork W4220833452 @default.
- W4387410100 hasRelatedWork W4223451915 @default.
- W4387410100 hasRelatedWork W4308767530 @default.
- W4387410100 hasRelatedWork W4386951147 @default.
- W4387410100 hasRelatedWork W3005931108 @default.
- W4387410100 isParatext "false" @default.
- W4387410100 isRetracted "false" @default.
- W4387410100 workType "article" @default.