Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387410129> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4387410129 endingPage "13" @default.
- W4387410129 startingPage "1" @default.
- W4387410129 abstract "AbstractPaddy disease recognition presents challenges in the agricultural industry, and existing algorithms struggle to accurately identify diseases in complex scenarios. In this paper, we propose a precise object detection framework to address the challenges of severe overlap, multi-disease detection, morphological irregularities, multi-scale object classification, and complex scenarios in real-world environments in paddy disease detection. The proposed model is based on an improved version of the DEtection TRansformer (Detr) algorithm. The enhanced network architecture fuses multi-scale features by adding a feature fusion module after the backbone network, which is able to retain more original information of the images and greatly improves the detection accuracy; the use of deformable attention module greatly reduces the computational complexity of the model. To evaluate the PDN, a dedicated paddy disease detection dataset with 1200 images is created. Experimental results demonstrate that the proposed model obtained a precision value of 100%, a recall value of 89.3%, F1-score of 94.3%, and a mean average precision (mAP) value of 60.2%. The model outperforms the existing state-of-the-art detection models in detection accuracy.KEYWORDS: Paddy disease recognitionTransformermachine vision detection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported in part by the Jiangsu Basic Science (Natural Science) Research Projects in Higher Education Institutions (No.23KJB460034), Jiangsu province Youth Fund Project (No.BK2023040059), the China Postdoctoral Science Foundation Funded Project (No. 2022M721185), Jiangsu Agriculture Science and Technology Innovation Fund (No. CX(21)3145).Notes on contributorsXinyu ZhangXinyu Zhang is currently a master's student in mechanical engineering at the School of Mechanical Engineering, Yangzhou University. His research interest is machine learning.Hang DongDr. Hang Dong is a lecturer at Yangzhou University. He received his PhD degree in Mechanical Manufacture and Automation from Dalian University of Technology (2019). His research interests include the deep learning, machine learning, and robotics. Hang Dong is the corresponding author and can be contacted at hdong@yzu.edu.cn.Liang GongLiang Gong was born in Maanshan City, Anhui Province, China on October 26, 1999. He received his bachelor's degree from Anhui Polytechnic University in 2021. He is currently a master's student in mechanical engineering at the School of Mechanical Engineering, Yangzhou University. His research interests are machine vision and machine learning.Xin ChengXin Cheng was born in Lian Yungang, China, in 2002.He is currently a student in Yangzhou University.His research interests include computer vision,natural language processing.Zhenghui GeZhenghui Ge is currently an associate professor at Yangzhou University, China. He received his PhD degree from Nanjing University of Aeronautics and Astronautics, China, in 2018. His researches mainly focus on electrochemical machining.Liangchao GuoDr. Liangchao Guo is a distinguished research fellow at Yangzhou University. He received his PhD degree in Mechanical Manufacture and Automation from Dalian University of Technology (2019). His research interests include the fabrication and application of gas sensing, and storage devices." @default.
- W4387410129 created "2023-10-07" @default.
- W4387410129 creator A5005856313 @default.
- W4387410129 creator A5025361426 @default.
- W4387410129 creator A5055833241 @default.
- W4387410129 creator A5056776729 @default.
- W4387410129 creator A5079275442 @default.
- W4387410129 creator A5092362879 @default.
- W4387410129 date "2023-10-06" @default.
- W4387410129 modified "2023-10-08" @default.
- W4387410129 title "Multiple paddy disease recognition methods based on deformable transformer attention mechanism in complex scenarios" @default.
- W4387410129 cites W1536680647 @default.
- W4387410129 cites W1553898020 @default.
- W4387410129 cites W2108598243 @default.
- W4387410129 cites W2194775991 @default.
- W4387410129 cites W2565639579 @default.
- W4387410129 cites W2790979755 @default.
- W4387410129 cites W2886590014 @default.
- W4387410129 cites W2887311010 @default.
- W4387410129 cites W2962992847 @default.
- W4387410129 cites W2963037989 @default.
- W4387410129 cites W3010225408 @default.
- W4387410129 cites W3047532279 @default.
- W4387410129 cites W3096609285 @default.
- W4387410129 cites W3109385023 @default.
- W4387410129 cites W3195147880 @default.
- W4387410129 cites W3210535920 @default.
- W4387410129 cites W4206720985 @default.
- W4387410129 cites W4246233237 @default.
- W4387410129 cites W4285195002 @default.
- W4387410129 cites W4288722001 @default.
- W4387410129 cites W4309279743 @default.
- W4387410129 cites W4311988354 @default.
- W4387410129 cites W4312673831 @default.
- W4387410129 doi "https://doi.org/10.1080/1206212x.2023.2263254" @default.
- W4387410129 hasPublicationYear "2023" @default.
- W4387410129 type Work @default.
- W4387410129 citedByCount "0" @default.
- W4387410129 crossrefType "journal-article" @default.
- W4387410129 hasAuthorship W4387410129A5005856313 @default.
- W4387410129 hasAuthorship W4387410129A5025361426 @default.
- W4387410129 hasAuthorship W4387410129A5055833241 @default.
- W4387410129 hasAuthorship W4387410129A5056776729 @default.
- W4387410129 hasAuthorship W4387410129A5079275442 @default.
- W4387410129 hasAuthorship W4387410129A5092362879 @default.
- W4387410129 hasConcept C119857082 @default.
- W4387410129 hasConcept C124101348 @default.
- W4387410129 hasConcept C148524875 @default.
- W4387410129 hasConcept C150903083 @default.
- W4387410129 hasConcept C153180895 @default.
- W4387410129 hasConcept C154945302 @default.
- W4387410129 hasConcept C2776151529 @default.
- W4387410129 hasConcept C3019235130 @default.
- W4387410129 hasConcept C41008148 @default.
- W4387410129 hasConcept C81669768 @default.
- W4387410129 hasConcept C86803240 @default.
- W4387410129 hasConceptScore W4387410129C119857082 @default.
- W4387410129 hasConceptScore W4387410129C124101348 @default.
- W4387410129 hasConceptScore W4387410129C148524875 @default.
- W4387410129 hasConceptScore W4387410129C150903083 @default.
- W4387410129 hasConceptScore W4387410129C153180895 @default.
- W4387410129 hasConceptScore W4387410129C154945302 @default.
- W4387410129 hasConceptScore W4387410129C2776151529 @default.
- W4387410129 hasConceptScore W4387410129C3019235130 @default.
- W4387410129 hasConceptScore W4387410129C41008148 @default.
- W4387410129 hasConceptScore W4387410129C81669768 @default.
- W4387410129 hasConceptScore W4387410129C86803240 @default.
- W4387410129 hasFunder F4320309870 @default.
- W4387410129 hasLocation W43874101291 @default.
- W4387410129 hasOpenAccess W4387410129 @default.
- W4387410129 hasPrimaryLocation W43874101291 @default.
- W4387410129 hasRelatedWork W3200170908 @default.
- W4387410129 hasRelatedWork W3212239346 @default.
- W4387410129 hasRelatedWork W4224262160 @default.
- W4387410129 hasRelatedWork W4293205612 @default.
- W4387410129 hasRelatedWork W4297839701 @default.
- W4387410129 hasRelatedWork W4352976590 @default.
- W4387410129 hasRelatedWork W4382050342 @default.
- W4387410129 hasRelatedWork W4385349203 @default.
- W4387410129 hasRelatedWork W4385625287 @default.
- W4387410129 hasRelatedWork W4386414453 @default.
- W4387410129 isParatext "false" @default.
- W4387410129 isRetracted "false" @default.
- W4387410129 workType "article" @default.