Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387410814> ?p ?o ?g. }
- W4387410814 endingPage "100270" @default.
- W4387410814 startingPage "100270" @default.
- W4387410814 abstract "Deep learning methods in artificial intelligence are used for brain tumor diagnosis as they handle a huge amount of data. Compared to computerized tomography (CT), Ultrasound, and X-ray imaging, Magnetic Resonance Imaging (MRI) is effectively used for machine vision-based brain tumor diagnosis. However, due to the complex nature of the brain, brain tumor diagnosis is always challenging. This research aims to study the effectiveness of deep transfer learning architectures in brain tumor diagnosis. This paper applies four transfer learning architectures- InceptionV3, VGG19, DenseNet121, and MobileNet. We used a dataset with data from three benchmark databases of figshare, SARTAJ, and Br35H to validate the models. These databases have four classes: pituitary, no tumor, meningioma, and glioma. Image augmentation is applied to make the classes balanced. Experimental results demonstrate that the MobileNet outperforms competing methods by exhibiting an accuracy of 99.60%." @default.
- W4387410814 created "2023-10-07" @default.
- W4387410814 creator A5000993170 @default.
- W4387410814 creator A5006320453 @default.
- W4387410814 creator A5030037694 @default.
- W4387410814 creator A5036848523 @default.
- W4387410814 creator A5062502339 @default.
- W4387410814 creator A5072753929 @default.
- W4387410814 date "2023-12-01" @default.
- W4387410814 modified "2023-10-12" @default.
- W4387410814 title "Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging" @default.
- W4387410814 cites W2765490497 @default.
- W4387410814 cites W2910541852 @default.
- W4387410814 cites W2972838422 @default.
- W4387410814 cites W2988529604 @default.
- W4387410814 cites W2992078198 @default.
- W4387410814 cites W2995003683 @default.
- W4387410814 cites W3002769598 @default.
- W4387410814 cites W3011430986 @default.
- W4387410814 cites W3034436104 @default.
- W4387410814 cites W3084741591 @default.
- W4387410814 cites W3087421454 @default.
- W4387410814 cites W3097251131 @default.
- W4387410814 cites W3217453598 @default.
- W4387410814 cites W4224987889 @default.
- W4387410814 cites W4291448914 @default.
- W4387410814 cites W4307112373 @default.
- W4387410814 cites W4309441450 @default.
- W4387410814 cites W4310861931 @default.
- W4387410814 cites W4313427880 @default.
- W4387410814 cites W4318482339 @default.
- W4387410814 cites W4321786298 @default.
- W4387410814 cites W4323530522 @default.
- W4387410814 cites W4360604650 @default.
- W4387410814 cites W4366495146 @default.
- W4387410814 cites W4366824900 @default.
- W4387410814 cites W4381093790 @default.
- W4387410814 cites W4384206976 @default.
- W4387410814 doi "https://doi.org/10.1016/j.health.2023.100270" @default.
- W4387410814 hasPublicationYear "2023" @default.
- W4387410814 type Work @default.
- W4387410814 citedByCount "0" @default.
- W4387410814 crossrefType "journal-article" @default.
- W4387410814 hasAuthorship W4387410814A5000993170 @default.
- W4387410814 hasAuthorship W4387410814A5006320453 @default.
- W4387410814 hasAuthorship W4387410814A5030037694 @default.
- W4387410814 hasAuthorship W4387410814A5036848523 @default.
- W4387410814 hasAuthorship W4387410814A5062502339 @default.
- W4387410814 hasAuthorship W4387410814A5072753929 @default.
- W4387410814 hasBestOaLocation W43874108141 @default.
- W4387410814 hasConcept C108583219 @default.
- W4387410814 hasConcept C115961682 @default.
- W4387410814 hasConcept C119857082 @default.
- W4387410814 hasConcept C126838900 @default.
- W4387410814 hasConcept C13280743 @default.
- W4387410814 hasConcept C142724271 @default.
- W4387410814 hasConcept C143409427 @default.
- W4387410814 hasConcept C150899416 @default.
- W4387410814 hasConcept C153180895 @default.
- W4387410814 hasConcept C154945302 @default.
- W4387410814 hasConcept C185798385 @default.
- W4387410814 hasConcept C205649164 @default.
- W4387410814 hasConcept C2778227246 @default.
- W4387410814 hasConcept C2779130545 @default.
- W4387410814 hasConcept C41008148 @default.
- W4387410814 hasConcept C502942594 @default.
- W4387410814 hasConcept C71924100 @default.
- W4387410814 hasConcept C75294576 @default.
- W4387410814 hasConceptScore W4387410814C108583219 @default.
- W4387410814 hasConceptScore W4387410814C115961682 @default.
- W4387410814 hasConceptScore W4387410814C119857082 @default.
- W4387410814 hasConceptScore W4387410814C126838900 @default.
- W4387410814 hasConceptScore W4387410814C13280743 @default.
- W4387410814 hasConceptScore W4387410814C142724271 @default.
- W4387410814 hasConceptScore W4387410814C143409427 @default.
- W4387410814 hasConceptScore W4387410814C150899416 @default.
- W4387410814 hasConceptScore W4387410814C153180895 @default.
- W4387410814 hasConceptScore W4387410814C154945302 @default.
- W4387410814 hasConceptScore W4387410814C185798385 @default.
- W4387410814 hasConceptScore W4387410814C205649164 @default.
- W4387410814 hasConceptScore W4387410814C2778227246 @default.
- W4387410814 hasConceptScore W4387410814C2779130545 @default.
- W4387410814 hasConceptScore W4387410814C41008148 @default.
- W4387410814 hasConceptScore W4387410814C502942594 @default.
- W4387410814 hasConceptScore W4387410814C71924100 @default.
- W4387410814 hasConceptScore W4387410814C75294576 @default.
- W4387410814 hasLocation W43874108141 @default.
- W4387410814 hasOpenAccess W4387410814 @default.
- W4387410814 hasPrimaryLocation W43874108141 @default.
- W4387410814 hasRelatedWork W2234322404 @default.
- W4387410814 hasRelatedWork W2378211422 @default.
- W4387410814 hasRelatedWork W2981628807 @default.
- W4387410814 hasRelatedWork W3012393889 @default.
- W4387410814 hasRelatedWork W3176438653 @default.
- W4387410814 hasRelatedWork W3189091156 @default.
- W4387410814 hasRelatedWork W3193641238 @default.
- W4387410814 hasRelatedWork W4285815841 @default.
- W4387410814 hasRelatedWork W4379875147 @default.