Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387415209> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387415209 endingPage "65" @default.
- W4387415209 startingPage "55" @default.
- W4387415209 abstract "Data has been increasing exponentially over the past few years. This has introduced a variety of anomalies and security threats in the field of networking. Because of this, Intrusion Detection Systems (IDS) have become popular. An IDS is a network trafficking monitoring system that detects any suspicious activity and alerts the administrator when it is found. An IDS is generally prone to false alarms. Therefore, there is a need to fine-tune them. Using Machine Learning and Deep Learning techniques, one can build such systems which are accurate in detection of malicious activities. Previously, KDDCUP99 dataset has been used for most of the research purposes. However, the dataset is old and doesn’t justify the intrusions and malicious activities that occur now. Therefore, we have made the use of UNSW-NB15dataset (Moustafa and Slay, 2015 Military communications and information systems conference (MilCIS), 2015) which is an upgraded version of KDDCUP99 dataset and is more uniform and balanced. We have used various machine learning and deep learning algorithms like Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) to classify whether it was a network intrusion or not. It has been found that SVM, DT, ANN and NB gave a hundred percent accuracy whereas the Random Forest model gave an accuracy of 99.9%." @default.
- W4387415209 created "2023-10-07" @default.
- W4387415209 creator A5023336187 @default.
- W4387415209 creator A5039235003 @default.
- W4387415209 creator A5040335377 @default.
- W4387415209 creator A5084917405 @default.
- W4387415209 date "2023-01-01" @default.
- W4387415209 modified "2023-10-16" @default.
- W4387415209 title "Security Attack Detection Using Machine Learning and Deep Learning" @default.
- W4387415209 cites W2296509296 @default.
- W4387415209 cites W2495428268 @default.
- W4387415209 cites W2886020981 @default.
- W4387415209 cites W3004752684 @default.
- W4387415209 cites W3016470706 @default.
- W4387415209 cites W3017881119 @default.
- W4387415209 cites W3040516461 @default.
- W4387415209 cites W3106741970 @default.
- W4387415209 cites W3211580360 @default.
- W4387415209 cites W4211114749 @default.
- W4387415209 cites W4293221016 @default.
- W4387415209 doi "https://doi.org/10.1007/978-3-031-28581-3_6" @default.
- W4387415209 hasPublicationYear "2023" @default.
- W4387415209 type Work @default.
- W4387415209 citedByCount "0" @default.
- W4387415209 crossrefType "book-chapter" @default.
- W4387415209 hasAuthorship W4387415209A5023336187 @default.
- W4387415209 hasAuthorship W4387415209A5039235003 @default.
- W4387415209 hasAuthorship W4387415209A5040335377 @default.
- W4387415209 hasAuthorship W4387415209A5084917405 @default.
- W4387415209 hasConcept C108583219 @default.
- W4387415209 hasConcept C119857082 @default.
- W4387415209 hasConcept C12267149 @default.
- W4387415209 hasConcept C154945302 @default.
- W4387415209 hasConcept C169258074 @default.
- W4387415209 hasConcept C182590292 @default.
- W4387415209 hasConcept C202444582 @default.
- W4387415209 hasConcept C33923547 @default.
- W4387415209 hasConcept C35525427 @default.
- W4387415209 hasConcept C38652104 @default.
- W4387415209 hasConcept C41008148 @default.
- W4387415209 hasConcept C50644808 @default.
- W4387415209 hasConcept C52001869 @default.
- W4387415209 hasConcept C84525736 @default.
- W4387415209 hasConcept C9652623 @default.
- W4387415209 hasConceptScore W4387415209C108583219 @default.
- W4387415209 hasConceptScore W4387415209C119857082 @default.
- W4387415209 hasConceptScore W4387415209C12267149 @default.
- W4387415209 hasConceptScore W4387415209C154945302 @default.
- W4387415209 hasConceptScore W4387415209C169258074 @default.
- W4387415209 hasConceptScore W4387415209C182590292 @default.
- W4387415209 hasConceptScore W4387415209C202444582 @default.
- W4387415209 hasConceptScore W4387415209C33923547 @default.
- W4387415209 hasConceptScore W4387415209C35525427 @default.
- W4387415209 hasConceptScore W4387415209C38652104 @default.
- W4387415209 hasConceptScore W4387415209C41008148 @default.
- W4387415209 hasConceptScore W4387415209C50644808 @default.
- W4387415209 hasConceptScore W4387415209C52001869 @default.
- W4387415209 hasConceptScore W4387415209C84525736 @default.
- W4387415209 hasConceptScore W4387415209C9652623 @default.
- W4387415209 hasLocation W43874152091 @default.
- W4387415209 hasOpenAccess W4387415209 @default.
- W4387415209 hasPrimaryLocation W43874152091 @default.
- W4387415209 hasRelatedWork W2780266336 @default.
- W4387415209 hasRelatedWork W2970562883 @default.
- W4387415209 hasRelatedWork W3036529732 @default.
- W4387415209 hasRelatedWork W3154045278 @default.
- W4387415209 hasRelatedWork W3210764983 @default.
- W4387415209 hasRelatedWork W4285162676 @default.
- W4387415209 hasRelatedWork W4367335949 @default.
- W4387415209 hasRelatedWork W4367336074 @default.
- W4387415209 hasRelatedWork W4379620016 @default.
- W4387415209 hasRelatedWork W4382052559 @default.
- W4387415209 isParatext "false" @default.
- W4387415209 isRetracted "false" @default.
- W4387415209 workType "book-chapter" @default.