Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387415239> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387415239 endingPage "1" @default.
- W4387415239 startingPage "1" @default.
- W4387415239 abstract "The prediction of the remaining useful life (RUL) of transformer oil helps in condition monitoring and health monitoring of oil-filled power transformers. However, the prediction of RUL depends on the ageing condition of the insulation system. In this paper, a novel hybrid machine learning (ML)-based regression model is developed for predicting the RUL of the insulating oil in years. A total of 26 features have been taken from different chemical and physical properties and indices of mineral oil. Later, features are selected using the Pearson correlation coefficient and conditional mutual information-based feature selection (CMIFS) techniques. Finally, a hybrid algorithm consisting of support vector regression (SVR), k-nearest neighbor (k-NN), multiple layer perceptron (MLP), ridge regression (RR), ElasticNet, Adaptive Boosting (AdaBoost), and extreme gradient boost (XGBoost) are used to predict the RUL of the oil. The performance of the hybrid model is analyzed by root mean square error (RMSE), root mean square logarithmic error (RMSLE), mean absolute error (MAE), and correlation coefficient (R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ). The comparison with the individual base regression algorithm showed that the hybrid model performed better. The present study adds to the arguments that data-driven intelligent monitoring systems are essential for the safe and efficient health monitoring of transformers." @default.
- W4387415239 created "2023-10-07" @default.
- W4387415239 creator A5002601939 @default.
- W4387415239 creator A5026454630 @default.
- W4387415239 creator A5031211533 @default.
- W4387415239 creator A5082882396 @default.
- W4387415239 date "2023-01-01" @default.
- W4387415239 modified "2023-10-08" @default.
- W4387415239 title "A Hybrid Regression Model to Estimate Remaining Useful Life of Transformer Liquid" @default.
- W4387415239 doi "https://doi.org/10.1109/tdei.2023.3322669" @default.
- W4387415239 hasPublicationYear "2023" @default.
- W4387415239 type Work @default.
- W4387415239 citedByCount "0" @default.
- W4387415239 crossrefType "journal-article" @default.
- W4387415239 hasAuthorship W4387415239A5002601939 @default.
- W4387415239 hasAuthorship W4387415239A5026454630 @default.
- W4387415239 hasAuthorship W4387415239A5031211533 @default.
- W4387415239 hasAuthorship W4387415239A5082882396 @default.
- W4387415239 hasConcept C105795698 @default.
- W4387415239 hasConcept C119599485 @default.
- W4387415239 hasConcept C12267149 @default.
- W4387415239 hasConcept C127413603 @default.
- W4387415239 hasConcept C139945424 @default.
- W4387415239 hasConcept C141404830 @default.
- W4387415239 hasConcept C148483581 @default.
- W4387415239 hasConcept C152877465 @default.
- W4387415239 hasConcept C154945302 @default.
- W4387415239 hasConcept C165801399 @default.
- W4387415239 hasConcept C179717631 @default.
- W4387415239 hasConcept C181335627 @default.
- W4387415239 hasConcept C2780092901 @default.
- W4387415239 hasConcept C2780150128 @default.
- W4387415239 hasConcept C33923547 @default.
- W4387415239 hasConcept C41008148 @default.
- W4387415239 hasConcept C50644808 @default.
- W4387415239 hasConcept C60908668 @default.
- W4387415239 hasConcept C66322947 @default.
- W4387415239 hasConcept C71907059 @default.
- W4387415239 hasConcept C83546350 @default.
- W4387415239 hasConceptScore W4387415239C105795698 @default.
- W4387415239 hasConceptScore W4387415239C119599485 @default.
- W4387415239 hasConceptScore W4387415239C12267149 @default.
- W4387415239 hasConceptScore W4387415239C127413603 @default.
- W4387415239 hasConceptScore W4387415239C139945424 @default.
- W4387415239 hasConceptScore W4387415239C141404830 @default.
- W4387415239 hasConceptScore W4387415239C148483581 @default.
- W4387415239 hasConceptScore W4387415239C152877465 @default.
- W4387415239 hasConceptScore W4387415239C154945302 @default.
- W4387415239 hasConceptScore W4387415239C165801399 @default.
- W4387415239 hasConceptScore W4387415239C179717631 @default.
- W4387415239 hasConceptScore W4387415239C181335627 @default.
- W4387415239 hasConceptScore W4387415239C2780092901 @default.
- W4387415239 hasConceptScore W4387415239C2780150128 @default.
- W4387415239 hasConceptScore W4387415239C33923547 @default.
- W4387415239 hasConceptScore W4387415239C41008148 @default.
- W4387415239 hasConceptScore W4387415239C50644808 @default.
- W4387415239 hasConceptScore W4387415239C60908668 @default.
- W4387415239 hasConceptScore W4387415239C66322947 @default.
- W4387415239 hasConceptScore W4387415239C71907059 @default.
- W4387415239 hasConceptScore W4387415239C83546350 @default.
- W4387415239 hasLocation W43874152391 @default.
- W4387415239 hasOpenAccess W4387415239 @default.
- W4387415239 hasPrimaryLocation W43874152391 @default.
- W4387415239 hasRelatedWork W1566332026 @default.
- W4387415239 hasRelatedWork W2002678693 @default.
- W4387415239 hasRelatedWork W2067443264 @default.
- W4387415239 hasRelatedWork W2556335056 @default.
- W4387415239 hasRelatedWork W2741186499 @default.
- W4387415239 hasRelatedWork W2804652951 @default.
- W4387415239 hasRelatedWork W2974656316 @default.
- W4387415239 hasRelatedWork W31566076 @default.
- W4387415239 hasRelatedWork W4285165247 @default.
- W4387415239 hasRelatedWork W4297902562 @default.
- W4387415239 isParatext "false" @default.
- W4387415239 isRetracted "false" @default.
- W4387415239 workType "article" @default.