Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387421808> ?p ?o ?g. }
- W4387421808 abstract "This paper introduces a large scale multimodal corpus collected for the purpose of analysing and predicting player engagement in commercial-standard games. The corpus is solicited from 25 players of the action role-playing game Tom Clancy’s The Division 2, who annotated their level of engagement using a time-continuous annotation tool. The cleaned and processed corpus presented in this paper consists of nearly 20 hours of annotated gameplay videos accompanied by logged gamepad actions. We report preliminary results on predicting long-term player engagement based on in-game footage and game controller actions using Convolutional Neural Network architectures. Results obtained suggest we can predict the player engagement with up to accuracy on average ( at best) when we fuse information from the game footage and the player’s controller input. Our findings validate the hypothesis that long-term (i.e. 1 hour of play) engagement can be predicted efficiently solely from pixels and gamepad actions." @default.
- W4387421808 created "2023-10-08" @default.
- W4387421808 creator A5012075090 @default.
- W4387421808 creator A5017671388 @default.
- W4387421808 creator A5019425772 @default.
- W4387421808 creator A5043198300 @default.
- W4387421808 creator A5044861252 @default.
- W4387421808 creator A5056006892 @default.
- W4387421808 creator A5057445534 @default.
- W4387421808 date "2023-10-09" @default.
- W4387421808 modified "2023-10-12" @default.
- W4387421808 title "Predicting Player Engagement in Tom Clancy's The Division 2: A Multimodal Approach via Pixels and Gamepad Actions" @default.
- W4387421808 cites W1552007786 @default.
- W4387421808 cites W1966532833 @default.
- W4387421808 cites W1983412528 @default.
- W4387421808 cites W2002996465 @default.
- W4387421808 cites W2045528981 @default.
- W4387421808 cites W2061554433 @default.
- W4387421808 cites W2098476033 @default.
- W4387421808 cites W2103184652 @default.
- W4387421808 cites W2117539524 @default.
- W4387421808 cites W2153713744 @default.
- W4387421808 cites W2164623278 @default.
- W4387421808 cites W2181387890 @default.
- W4387421808 cites W2253728219 @default.
- W4387421808 cites W2519261326 @default.
- W4387421808 cites W2587982884 @default.
- W4387421808 cites W2613059487 @default.
- W4387421808 cites W2713788831 @default.
- W4387421808 cites W2745497104 @default.
- W4387421808 cites W2787552263 @default.
- W4387421808 cites W2787876196 @default.
- W4387421808 cites W2900358852 @default.
- W4387421808 cites W2933138175 @default.
- W4387421808 cites W2980399003 @default.
- W4387421808 cites W2994666678 @default.
- W4387421808 cites W2994890005 @default.
- W4387421808 cites W2996235414 @default.
- W4387421808 cites W3089202871 @default.
- W4387421808 cites W3124959332 @default.
- W4387421808 cites W3126625480 @default.
- W4387421808 cites W3156576211 @default.
- W4387421808 cites W3161428216 @default.
- W4387421808 cites W3193776664 @default.
- W4387421808 cites W3201541172 @default.
- W4387421808 cites W3204551889 @default.
- W4387421808 cites W3211905200 @default.
- W4387421808 cites W4224930237 @default.
- W4387421808 cites W4230277160 @default.
- W4387421808 cites W4286656544 @default.
- W4387421808 cites W4293342342 @default.
- W4387421808 cites W4362650874 @default.
- W4387421808 cites W4376851308 @default.
- W4387421808 doi "https://doi.org/10.1145/3577190.3614203" @default.
- W4387421808 hasPublicationYear "2023" @default.
- W4387421808 type Work @default.
- W4387421808 citedByCount "0" @default.
- W4387421808 crossrefType "proceedings-article" @default.
- W4387421808 hasAuthorship W4387421808A5012075090 @default.
- W4387421808 hasAuthorship W4387421808A5017671388 @default.
- W4387421808 hasAuthorship W4387421808A5019425772 @default.
- W4387421808 hasAuthorship W4387421808A5043198300 @default.
- W4387421808 hasAuthorship W4387421808A5044861252 @default.
- W4387421808 hasAuthorship W4387421808A5056006892 @default.
- W4387421808 hasAuthorship W4387421808A5057445534 @default.
- W4387421808 hasBestOaLocation W43874218082 @default.
- W4387421808 hasConcept C107457646 @default.
- W4387421808 hasConcept C119599485 @default.
- W4387421808 hasConcept C121332964 @default.
- W4387421808 hasConcept C127413603 @default.
- W4387421808 hasConcept C141353440 @default.
- W4387421808 hasConcept C154945302 @default.
- W4387421808 hasConcept C2776321320 @default.
- W4387421808 hasConcept C2780791683 @default.
- W4387421808 hasConcept C3018412434 @default.
- W4387421808 hasConcept C41008148 @default.
- W4387421808 hasConcept C49774154 @default.
- W4387421808 hasConcept C61797465 @default.
- W4387421808 hasConcept C62520636 @default.
- W4387421808 hasConcept C81363708 @default.
- W4387421808 hasConceptScore W4387421808C107457646 @default.
- W4387421808 hasConceptScore W4387421808C119599485 @default.
- W4387421808 hasConceptScore W4387421808C121332964 @default.
- W4387421808 hasConceptScore W4387421808C127413603 @default.
- W4387421808 hasConceptScore W4387421808C141353440 @default.
- W4387421808 hasConceptScore W4387421808C154945302 @default.
- W4387421808 hasConceptScore W4387421808C2776321320 @default.
- W4387421808 hasConceptScore W4387421808C2780791683 @default.
- W4387421808 hasConceptScore W4387421808C3018412434 @default.
- W4387421808 hasConceptScore W4387421808C41008148 @default.
- W4387421808 hasConceptScore W4387421808C49774154 @default.
- W4387421808 hasConceptScore W4387421808C61797465 @default.
- W4387421808 hasConceptScore W4387421808C62520636 @default.
- W4387421808 hasConceptScore W4387421808C81363708 @default.
- W4387421808 hasFunder F4320332999 @default.
- W4387421808 hasLocation W43874218081 @default.
- W4387421808 hasLocation W43874218082 @default.
- W4387421808 hasOpenAccess W4387421808 @default.
- W4387421808 hasPrimaryLocation W43874218081 @default.
- W4387421808 hasRelatedWork W1570848052 @default.