Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387422042> ?p ?o ?g. }
- W4387422042 endingPage "2577" @default.
- W4387422042 startingPage "2577" @default.
- W4387422042 abstract "Wheat is an important food crop in China. The quality of wheat affects the development of the agricultural economy. However, the high-quality wheat produced in China cannot meet the demand, so it would be an important direction for research to develop high-quality wheat. Grain protein content (GPC) is an important criterion for the quality of winter wheat and its content directly affects the quality of wheat. Studying the spatial heterogeneity of wheat grain proteins is beneficial to the prediction of wheat quality, and it plays a guiding role in the identification, grading, and processing of wheat quality. Due to the complexity and variability of wheat quality, conventional evaluation methods have shortcomings such as low accuracy and poor applicability. To better predict the GPC, geographically weighted regression (GWR) models, multiple linear regression, random forest (RF), BP neural networks, support vector machine, and long-and-short-term memory algorithms were used to analyze the meteorological data and soil data of Jiangsu Province from March to May in 2019–2022. It was found that the winter wheat GPC rises by 0.17% with every 0.1° increase in north latitude at the county level in Jiangsu. Comparison of the prediction accuracy of the coefficient of determination, mean deviation error, root mean square error, and mean absolute error by analyzing multiple algorithms showed that the GWR model was the most accurate, followed by the RF model. The regression coefficient of precipitation in April showed the smallest range of variation among all factors, indicating that precipitation in April had a more stable effect on GPC in the study area than the other meteorological factors. Therefore, consideration of spatial information might be beneficial in predicting county-level winter wheat GPC. GWR models based on meteorological and soil factors enrich the studies regarding the prediction of wheat GPC based on environmental data. It might be applied to predict winter wheat GPC and improve wheat quality to better guide large-scale production and processing." @default.
- W4387422042 created "2023-10-08" @default.
- W4387422042 creator A5010333963 @default.
- W4387422042 creator A5017022122 @default.
- W4387422042 creator A5031679314 @default.
- W4387422042 creator A5040306141 @default.
- W4387422042 creator A5049647629 @default.
- W4387422042 creator A5058135877 @default.
- W4387422042 creator A5065229969 @default.
- W4387422042 creator A5068477955 @default.
- W4387422042 creator A5073839529 @default.
- W4387422042 date "2023-10-07" @default.
- W4387422042 modified "2023-10-12" @default.
- W4387422042 title "Improving the Prediction of Grain Protein Content in Winter Wheat at the County Level with Multisource Data: A Case Study in Jiangsu Province of China" @default.
- W4387422042 cites W1972815461 @default.
- W4387422042 cites W1973904940 @default.
- W4387422042 cites W1975983107 @default.
- W4387422042 cites W1994221921 @default.
- W4387422042 cites W2018873203 @default.
- W4387422042 cites W2038255777 @default.
- W4387422042 cites W2044433661 @default.
- W4387422042 cites W2048220279 @default.
- W4387422042 cites W2050510843 @default.
- W4387422042 cites W2061024135 @default.
- W4387422042 cites W2071936897 @default.
- W4387422042 cites W2075801927 @default.
- W4387422042 cites W2089953116 @default.
- W4387422042 cites W2098172075 @default.
- W4387422042 cites W2100635342 @default.
- W4387422042 cites W2195361594 @default.
- W4387422042 cites W2317582304 @default.
- W4387422042 cites W2734997369 @default.
- W4387422042 cites W2896437316 @default.
- W4387422042 cites W2943654052 @default.
- W4387422042 cites W2948613401 @default.
- W4387422042 cites W2952159568 @default.
- W4387422042 cites W2992769856 @default.
- W4387422042 cites W2995790026 @default.
- W4387422042 cites W2997133053 @default.
- W4387422042 cites W3000569269 @default.
- W4387422042 cites W3001434235 @default.
- W4387422042 cites W3014698298 @default.
- W4387422042 cites W3022293080 @default.
- W4387422042 cites W3024914069 @default.
- W4387422042 cites W3109395739 @default.
- W4387422042 cites W3117766325 @default.
- W4387422042 cites W3217114531 @default.
- W4387422042 cites W4211031480 @default.
- W4387422042 cites W4212960252 @default.
- W4387422042 cites W4213230024 @default.
- W4387422042 cites W4220653303 @default.
- W4387422042 cites W4220823118 @default.
- W4387422042 cites W4283582973 @default.
- W4387422042 cites W4297236172 @default.
- W4387422042 doi "https://doi.org/10.3390/agronomy13102577" @default.
- W4387422042 hasPublicationYear "2023" @default.
- W4387422042 type Work @default.
- W4387422042 citedByCount "0" @default.
- W4387422042 crossrefType "journal-article" @default.
- W4387422042 hasAuthorship W4387422042A5010333963 @default.
- W4387422042 hasAuthorship W4387422042A5017022122 @default.
- W4387422042 hasAuthorship W4387422042A5031679314 @default.
- W4387422042 hasAuthorship W4387422042A5040306141 @default.
- W4387422042 hasAuthorship W4387422042A5049647629 @default.
- W4387422042 hasAuthorship W4387422042A5058135877 @default.
- W4387422042 hasAuthorship W4387422042A5065229969 @default.
- W4387422042 hasAuthorship W4387422042A5068477955 @default.
- W4387422042 hasAuthorship W4387422042A5073839529 @default.
- W4387422042 hasBestOaLocation W43874220421 @default.
- W4387422042 hasConcept C105795698 @default.
- W4387422042 hasConcept C107054158 @default.
- W4387422042 hasConcept C118518473 @default.
- W4387422042 hasConcept C119857082 @default.
- W4387422042 hasConcept C122523270 @default.
- W4387422042 hasConcept C128990827 @default.
- W4387422042 hasConcept C13280743 @default.
- W4387422042 hasConcept C139945424 @default.
- W4387422042 hasConcept C149769383 @default.
- W4387422042 hasConcept C152877465 @default.
- W4387422042 hasConcept C153294291 @default.
- W4387422042 hasConcept C166957645 @default.
- W4387422042 hasConcept C169258074 @default.
- W4387422042 hasConcept C18903297 @default.
- W4387422042 hasConcept C191935318 @default.
- W4387422042 hasConcept C205649164 @default.
- W4387422042 hasConcept C22679943 @default.
- W4387422042 hasConcept C2777286243 @default.
- W4387422042 hasConcept C2778520195 @default.
- W4387422042 hasConcept C2780092901 @default.
- W4387422042 hasConcept C3018661444 @default.
- W4387422042 hasConcept C33923547 @default.
- W4387422042 hasConcept C39432304 @default.
- W4387422042 hasConcept C41008148 @default.
- W4387422042 hasConcept C45804977 @default.
- W4387422042 hasConcept C48921125 @default.
- W4387422042 hasConcept C6557445 @default.
- W4387422042 hasConcept C83546350 @default.
- W4387422042 hasConcept C86803240 @default.