Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387422598> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387422598 endingPage "13" @default.
- W4387422598 startingPage "3" @default.
- W4387422598 abstract "Deep learning algorithms for image segmentation typically require large data sets with high-quality annotations to be trained with. For many domains, the annotation cost for obtaining such sets may prove to be prohibitively expensive. Our work aims to reduce the time necessary to create high-quality annotated images by using a relatively small well-annotated data set for training a convolutional neural network to upgrade lower-quality annotations, produced at lower annotation costs. We apply our method to the task of cell segmentation and investigate the performance of our solution when upgrading annotation quality for labels affected by three types of annotation errors: omission, inclusion, and bias. We observe that our method is able to upgrade annotations affected by high error levels from 0.3 to 0.9 Dice similarity with the ground-truth annotations. Moreover, we show that a relatively small well-annotated set enlarged with samples with upgraded annotations can be used to train better-performing segmentation networks compared to training only on the well-annotated set." @default.
- W4387422598 created "2023-10-08" @default.
- W4387422598 creator A5006657933 @default.
- W4387422598 creator A5037323866 @default.
- W4387422598 creator A5071026235 @default.
- W4387422598 creator A5072386615 @default.
- W4387422598 date "2023-01-01" @default.
- W4387422598 modified "2023-10-18" @default.
- W4387422598 title "Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations" @default.
- W4387422598 cites W1901129140 @default.
- W4387422598 cites W2053802831 @default.
- W4387422598 cites W2070008638 @default.
- W4387422598 cites W2396622801 @default.
- W4387422598 cites W2765811365 @default.
- W4387422598 cites W2794103425 @default.
- W4387422598 cites W2794284562 @default.
- W4387422598 cites W2806340665 @default.
- W4387422598 cites W2871579310 @default.
- W4387422598 cites W2891451067 @default.
- W4387422598 cites W2904856451 @default.
- W4387422598 cites W2953343412 @default.
- W4387422598 cites W2955184057 @default.
- W4387422598 cites W2997238205 @default.
- W4387422598 cites W3091211922 @default.
- W4387422598 cites W3131362130 @default.
- W4387422598 cites W3214596602 @default.
- W4387422598 cites W4301229630 @default.
- W4387422598 cites W649715718 @default.
- W4387422598 doi "https://doi.org/10.1007/978-3-031-44917-8_1" @default.
- W4387422598 hasPublicationYear "2023" @default.
- W4387422598 type Work @default.
- W4387422598 citedByCount "0" @default.
- W4387422598 crossrefType "book-chapter" @default.
- W4387422598 hasAuthorship W4387422598A5006657933 @default.
- W4387422598 hasAuthorship W4387422598A5037323866 @default.
- W4387422598 hasAuthorship W4387422598A5071026235 @default.
- W4387422598 hasAuthorship W4387422598A5072386615 @default.
- W4387422598 hasConcept C103278499 @default.
- W4387422598 hasConcept C111472728 @default.
- W4387422598 hasConcept C111919701 @default.
- W4387422598 hasConcept C115961682 @default.
- W4387422598 hasConcept C138885662 @default.
- W4387422598 hasConcept C146849305 @default.
- W4387422598 hasConcept C153180895 @default.
- W4387422598 hasConcept C154945302 @default.
- W4387422598 hasConcept C177264268 @default.
- W4387422598 hasConcept C199360897 @default.
- W4387422598 hasConcept C2776321320 @default.
- W4387422598 hasConcept C2779530757 @default.
- W4387422598 hasConcept C2780615140 @default.
- W4387422598 hasConcept C41008148 @default.
- W4387422598 hasConcept C51632099 @default.
- W4387422598 hasConcept C81363708 @default.
- W4387422598 hasConcept C89600930 @default.
- W4387422598 hasConceptScore W4387422598C103278499 @default.
- W4387422598 hasConceptScore W4387422598C111472728 @default.
- W4387422598 hasConceptScore W4387422598C111919701 @default.
- W4387422598 hasConceptScore W4387422598C115961682 @default.
- W4387422598 hasConceptScore W4387422598C138885662 @default.
- W4387422598 hasConceptScore W4387422598C146849305 @default.
- W4387422598 hasConceptScore W4387422598C153180895 @default.
- W4387422598 hasConceptScore W4387422598C154945302 @default.
- W4387422598 hasConceptScore W4387422598C177264268 @default.
- W4387422598 hasConceptScore W4387422598C199360897 @default.
- W4387422598 hasConceptScore W4387422598C2776321320 @default.
- W4387422598 hasConceptScore W4387422598C2779530757 @default.
- W4387422598 hasConceptScore W4387422598C2780615140 @default.
- W4387422598 hasConceptScore W4387422598C41008148 @default.
- W4387422598 hasConceptScore W4387422598C51632099 @default.
- W4387422598 hasConceptScore W4387422598C81363708 @default.
- W4387422598 hasConceptScore W4387422598C89600930 @default.
- W4387422598 hasLocation W43874225981 @default.
- W4387422598 hasOpenAccess W4387422598 @default.
- W4387422598 hasPrimaryLocation W43874225981 @default.
- W4387422598 hasRelatedWork W116478885 @default.
- W4387422598 hasRelatedWork W2051543817 @default.
- W4387422598 hasRelatedWork W2354998446 @default.
- W4387422598 hasRelatedWork W2368576029 @default.
- W4387422598 hasRelatedWork W2368672678 @default.
- W4387422598 hasRelatedWork W2370626080 @default.
- W4387422598 hasRelatedWork W2377210208 @default.
- W4387422598 hasRelatedWork W2390420166 @default.
- W4387422598 hasRelatedWork W2391279445 @default.
- W4387422598 hasRelatedWork W2965111880 @default.
- W4387422598 isParatext "false" @default.
- W4387422598 isRetracted "false" @default.
- W4387422598 workType "book-chapter" @default.